期刊文献+
共找到19,451篇文章
< 1 2 250 >
每页显示 20 50 100
基于Plant Simulation的装配生产线规划方法 被引量:1
1
作者 陈光霞 《机械管理开发》 2025年第3期278-280,共3页
在工厂进行智能化改造或新建厂时,为节约开发成本,提高开发效率,必须进行工厂装配线规划。论述了利用Plant Simulation工厂仿真软件进行装配线规划的具体方法与过程,对规划过程中的功能模型的建立、装配过程的制定、Petri图及建模仿真... 在工厂进行智能化改造或新建厂时,为节约开发成本,提高开发效率,必须进行工厂装配线规划。论述了利用Plant Simulation工厂仿真软件进行装配线规划的具体方法与过程,对规划过程中的功能模型的建立、装配过程的制定、Petri图及建模仿真进行了分析描述,并利用仿真软件对所建立的装配线模型进行相关分析,利用智能工厂装配线仿真规划方法可以提高规划效率,节约规划成本,并为数字化工厂建设与数字孪生的应用提供了基础。 展开更多
关键词 智能制造 Plant simulation 装配线规划
在线阅读 下载PDF
Multidisciplinary and multi-fidelity coupling methods in aircraft engine simulations
2
作者 YANG Xin XIE Pengfu +2 位作者 DONG Xuezhi HE Ai TAN Chunqing 《推进技术》 北大核心 2025年第5期1-12,共12页
To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil... To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency. 展开更多
关键词 AERO-ENGINE Multi-fidelity simulation Overall performance CO-simulation Integrated model Zooming strategy
原文传递
Coarse-grained molecular dynamics simulations on self-assembly of polystyrene-block-poly(2-vinylpyridine)
3
作者 Daiwen Li Shoutian Qiu +6 位作者 Gan Liu Ming Liu Mingjie Wei Shipeng Sun Weihong Xing Xiaohua Lu Yong Wang 《Chinese Journal of Chemical Engineering》 2025年第7期15-25,共11页
Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)mole... Self-assembly of block copolymers(BCPs)is highly intricate and is adsorbing extensive experimental and simulation efforts to reveal it for maximizing structural order and device performances.The coarse-grained(CG)molecular dynamics(MD)simulation offers a microscopic angle to view the self-assembly of BCPs.Although some molecular details are sacrificed during CG processes,this method exhibits remarkable computational efficiency.In this study,a comprehensive CG model for polystyrene-block-poly(2-vinylpyridine),PS-b-P2VP,one of the most extensively studied BCPs for its high Flory-Huggins interaction parameter,is constructed,with parameters optimized using target values derived from all-atom MD simulations.The CG model precisely coincides with various classical self-assembling morphologies observed in experimental studies,matching the theoretical phase diagrams.Moreover,the conformational asymmetry of the experimental phase diagram is also clearly revealed by our simulation results,and the phase boundaries obtained from simulations are highly consistent with experimental results.The CG model is expected to extend to simulate the self-assembly behaviors of other BCPs in addition to PS-b-P2VP,thus increasing understanding of the microphase separation of BCPs from the molecular level. 展开更多
关键词 Block copolymers SELF-ASSEMBLY Martini force field POLYMERS Computer simulation Molecular simulation
在线阅读 下载PDF
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
4
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior Numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
5
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
SolarDesign:An online photovoltaic device simulation and design platform
6
作者 Wei E.I.Sha Xiaoyu Wang +8 位作者 Wenchao Chen Yuhao Fu Lijun Zhang Liang Tian Minshen Lin Shudi Jiao Ting Xu Tiange Sun Dongxue Liu 《Chinese Physics B》 2025年第1期135-141,共7页
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ... Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration. 展开更多
关键词 photovoltaic device simulation silicon solar cells organic and perovskite solar cells multi-physics and circuit simulation
原文传递
Factors affecting the perceived stress and anxiety of novice nursing students in high-fidelity simulation education:a secondary qualitative analysis of focus group interviews
7
作者 Natalie Lee Po-man Alice Chan Mei-ling Florence Wong Mei-Fung 《Frontiers of Nursing》 2025年第3期325-332,共8页
Objective:To gain insight into the potential factors that may cause perceived stress and anxiety in simulation education.Methods:A secondary qualitative analysis study using qualitative thematic synthesis.A local high... Objective:To gain insight into the potential factors that may cause perceived stress and anxiety in simulation education.Methods:A secondary qualitative analysis study using qualitative thematic synthesis.A local higher education institution that conducted pre-registration nursing programs.A total of 189 undergraduate nursing students that were never attained any clinical placement prior to the parent study.Focus group interviews were conducted to collect data that were then transcribed and analyzed through the qualitative thematic synthesis approach to develop themes.Results:Three themes were emerged from the participants’simulation experiences in terms of peoples(the observers vs the observed),actions(the prepared vs the unprepared),and settings(the realism vs the simulation).Conclusions:By considering and reviewing the current design and development of the simulation practice,the findings of this study contribute to the body of knowledge with valuable insights on stress and anxiety that may affect students’learning in simulation. 展开更多
关键词 high-fidelity simulation novice nursing students perceived anxiety perceived stress secondary qualitative analysis simulation-based education
在线阅读 下载PDF
基于Plant Simulation的双离合器装配线仿真优化 被引量:1
8
作者 江涛 刘雪梅 《农业装备与车辆工程》 2025年第6期97-102,共6页
在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulat... 在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulation构建装配线仿真模型,并进行装配线运行过程仿真。通过对生产线节拍、设备利用率等相关数据进行分析评估,找出生产线的瓶颈工位,通过工艺结构调整,实现了生产线节拍的优化与改善,达到了生产要求指标。同时进行了多组仿真实验,完成了托盘数量的优化。 展开更多
关键词 Plant simulation 双离合器 装配线
在线阅读 下载PDF
基于Plant Simulation仿真技术的装配生产线优化研究 被引量:1
9
作者 崔俊杰 马臻 郭海青 《南方农机》 2025年第2期145-149,共5页
【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增... 【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增幅接近10%,生产效率明显提升。【结论】通过将智能制造技能竞赛和科研教学活动相结合,能够凝练总结竞赛内容,促使教师紧盯前沿知识,创新改革教学内容,实现以赛促教、以赛促学、以赛促改、以赛促建的多重目标。 展开更多
关键词 Plant simulation仿真技术 生产优化 瓶颈工位
在线阅读 下载PDF
基于Plant Simulation的产线车辆调度问题
10
作者 刘浩然 刘松凯 陈斌 《科学技术与工程》 北大核心 2025年第6期2406-2418,共13页
随着“中国制造2025计划”的进行,军工工业要推行产线无人化,而自动引导车(automated guided vehicle,AGV)作为全自动化生产线的主要物流载体,其调度的优劣直接决定了整个产线的产能和效率。由于军工场所对于安全性的要求,无法采用无线... 随着“中国制造2025计划”的进行,军工工业要推行产线无人化,而自动引导车(automated guided vehicle,AGV)作为全自动化生产线的主要物流载体,其调度的优劣直接决定了整个产线的产能和效率。由于军工场所对于安全性的要求,无法采用无线通信等手段,只能采用点对点的光通讯方式,这也使得AGV通讯的实时性变差。基于Plant Simulation软件,建立了仿真系统模型,打通了该物流仿真软件与现场控制器的实时数据交互通道,实现了仿真系统与现实同步运行,完成了物流仿真软件与现场控制器的无缝连接,有效地解决了军工工业没有无线造成AGV调度实时性差的难题。实验证明,这种方法有效地简化了调度系统的编写难度,并使系统整体的实时性能提高了0.058 s。与传统方法相比,编写时间缩短了9.7倍,调试时间更缩短了22倍。为军工产线实现全自动化奠定基础,并为在危险场所使用脉动生产线提供技术支持。 展开更多
关键词 AGV调度 Plant simulation 离散仿真 实时性 智能调度
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
11
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
基于Solidworks Flow Simulation的换热器翅片形状对换热量影响研究
12
作者 张蓬菲 李俊 +2 位作者 孙丽婷 张慧跃 张宇 《山东化工》 2025年第7期205-209,共5页
利用Solidworks Flow Simulation软件,对不同翅片形状的翅片管式换热器进行数值模拟研究,探讨了在相同翅片面积、不考虑翅片厚度的前提下,翅片形状分别为正三角形、正方形、正六边形、正八边形、圆形时换热量的差异。通过建立不同翅片... 利用Solidworks Flow Simulation软件,对不同翅片形状的翅片管式换热器进行数值模拟研究,探讨了在相同翅片面积、不考虑翅片厚度的前提下,翅片形状分别为正三角形、正方形、正六边形、正八边形、圆形时换热量的差异。通过建立不同翅片形状的翅片管式换热器三维模型,设定合理的边界条件和物理属性,在保证其他所有物理参数、材料属性保持不变的前提下,分析了不同翅片形状的翅片管式换热器的热传递过程,计算出热交换系数、热通量、壁面温度、流体平均温度等数值,从而总结换热量的差异,归纳出翅片形状带给换热量的影响。研究表明,翅片形状对换热器的换热量有显著影响,若翅片形状为边数更多的正多边形,即翅片更接近于圆形,则换热量更小。换热量趋于稳态后,通过提取相同迭代次数区间的换热量数值,计算区间内换热量数值方差,发现三角形至六边形换热稳定性渐变稳定,从六边形至圆形稳定性逐渐降低。此研究为翅片管式换热器设计优化提供了理论依据。 展开更多
关键词 翅片管式换热器 翅片形状 Solidworks Flow simulation 换热量 CFD 数值模拟
在线阅读 下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation 被引量:1
13
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts Flow simulation Turbulent flow
原文传递
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
14
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 Machine learning Numerical simulation Graded density impactor Controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Synthesis and high frequency structure simulator electromagnetic simulation of hollow NC@CeO_(2)nanospheres for broad absorption bandwidth 被引量:1
15
作者 Shuhao Yang Peiyan Zhao +5 位作者 Xianyong Lu Xiaoyuan Hao Yufan Wu Huiya Wang Tao Zhou Guangsheng Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期678-688,共11页
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o... Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths. 展开更多
关键词 rare earth oxides carbon matrix composites hollow structure electromagnetic simulation
在线阅读 下载PDF
Seismic wave simulation of near-fault seismic intensity field for the 2025 Myanmar M_(w)7.7 earthquake constrained by mid-to far-field CENC seismic network data 被引量:1
16
作者 Xie Zhinan Wang Shuai +4 位作者 Yuan Yangtao Zhang Wenyue Zhou Tianyu Ma Qiang Li Shanyou 《Earthquake Engineering and Engineering Vibration》 2025年第3期629-640,I0001,共13页
The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismi... The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions. 展开更多
关键词 seismic wave simulation sparse seismic networks ground motion models seismic intensity feld finite-fault rupture model
在线阅读 下载PDF
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
17
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
18
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
Land use/cover change and ecological network in Gansu Province,China during 2000-2020 and their simulations in 2050 被引量:1
19
作者 MA Xinshu XIN Cunlin +6 位作者 CHEN Ning XIN Shunjie CHEN Hongxiang ZHANG Bo KANG Ligang WANG Yu JIAO Jirong 《Journal of Arid Land》 2025年第1期43-57,共15页
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t... Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making. 展开更多
关键词 patch-generating land use simulation(PLUS)model morphological spatial pattern analysis(MSPA) circuit theory ecological source ecological resistance surface ecological corridor ecological pinch point
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部