The main function of a hot blast stove is to deliver a high-temperature and stable hot blast to the blast furnace,which has an important impact on the blast furnace ironmaking process.To improve the combustion efficie...The main function of a hot blast stove is to deliver a high-temperature and stable hot blast to the blast furnace,which has an important impact on the blast furnace ironmaking process.To improve the combustion efficiency,a simulation model of the combustion part of an internal combustion hot blast stove was established by combining turbulence,combustion,and radiation models.Based on the original model,a new type of internal combustion hot blast stove is proposed.The results indicated insufficient combustion in the original structure and higher CO concentrations in the corners of the eyes at both ends of the combustor outlet,the recirculation area at the bottom of the combustion chamber was mainly concentrated in the middle part.With the new structure of the hot blast stove,the gas baffles with different inclination angles are added to the rectangular burner,at the outlet of the combustion chamber,the CO concentration is reduced to a certain extent,and the temperature distribution is more uniform.When the inclination angle of the gas baffle is 60°,the combustion chamber outlet section average temperature rises from 1686 K to 1693 K,the outlet flue gas average volume fraction of CO decreases the most,and the average volume fraction of CO decreases from 0.00708%to 0.00568%,which could reduce the CO content by about 20%.展开更多
The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing mo...The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.展开更多
Internal ballistic simulation(IBS)method of multi-burning-rate solid rocket motor(SRM)was developed based on 3-D burning regression method by parameterized feature CAD model(PFCADM)and lumped parameter,in consideratio...Internal ballistic simulation(IBS)method of multi-burning-rate solid rocket motor(SRM)was developed based on 3-D burning regression method by parameterized feature CAD model(PFCADM)and lumped parameter,in consideration of time-dependent,erosive-burning-effect from internal ballistic numerical algorithm.By driving multi-parameter CAD model based on PFCADM,the approach is capable of conducting the geometric regression simulation of various grain combinations of complex configurations with different burning rates.Through suitably simplifying the internal ballistic numerical algorithm,the problems of coupling geometric regression simulation of sub-grains of different burning rates and high computational consumption of internal ballistic calculation were solved.One tri-burning-rate grain motor,which had been firing-tested,was used as the validation case of simulation.The results show that,with the 3-D grain regression model and sufficient accurate internal ballistic algorithm,the method realizes IBS of the case in low computationalconsumption prediction of its performance within the accuracy of 2% during 1hclock-time.The application of the method provides a practical approach to aid SRM design of multi-burning-rate grain.展开更多
文摘The main function of a hot blast stove is to deliver a high-temperature and stable hot blast to the blast furnace,which has an important impact on the blast furnace ironmaking process.To improve the combustion efficiency,a simulation model of the combustion part of an internal combustion hot blast stove was established by combining turbulence,combustion,and radiation models.Based on the original model,a new type of internal combustion hot blast stove is proposed.The results indicated insufficient combustion in the original structure and higher CO concentrations in the corners of the eyes at both ends of the combustor outlet,the recirculation area at the bottom of the combustion chamber was mainly concentrated in the middle part.With the new structure of the hot blast stove,the gas baffles with different inclination angles are added to the rectangular burner,at the outlet of the combustion chamber,the CO concentration is reduced to a certain extent,and the temperature distribution is more uniform.When the inclination angle of the gas baffle is 60°,the combustion chamber outlet section average temperature rises from 1686 K to 1693 K,the outlet flue gas average volume fraction of CO decreases the most,and the average volume fraction of CO decreases from 0.00708%to 0.00568%,which could reduce the CO content by about 20%.
文摘The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.
文摘Internal ballistic simulation(IBS)method of multi-burning-rate solid rocket motor(SRM)was developed based on 3-D burning regression method by parameterized feature CAD model(PFCADM)and lumped parameter,in consideration of time-dependent,erosive-burning-effect from internal ballistic numerical algorithm.By driving multi-parameter CAD model based on PFCADM,the approach is capable of conducting the geometric regression simulation of various grain combinations of complex configurations with different burning rates.Through suitably simplifying the internal ballistic numerical algorithm,the problems of coupling geometric regression simulation of sub-grains of different burning rates and high computational consumption of internal ballistic calculation were solved.One tri-burning-rate grain motor,which had been firing-tested,was used as the validation case of simulation.The results show that,with the 3-D grain regression model and sufficient accurate internal ballistic algorithm,the method realizes IBS of the case in low computationalconsumption prediction of its performance within the accuracy of 2% during 1hclock-time.The application of the method provides a practical approach to aid SRM design of multi-burning-rate grain.