To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation ...To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation experimental device was developed for ultra-deep carbonate reservoirs.Carbonate rock samples from the Sichuan Basin and Tarim Basin were used to simulate the dissolution-precipitation process of deep to ultra-deep carbonate reservoirs in an analogous geological setting.This unit comprises four core modules:an ultra-high temperature,high pressure triaxial stress core holder module(temperature higher than 300°C,pressure higher than 150 MPa),a multi-stage continuous flow module with temperature-pressure regulation,an ultra-high temperature-pressure sapphire window cell and an in-situ high-temperature-pressure fluid property measurement module and real-time ultra-high temperature-pressure permeability detection module.The new experimental device was used for simulation experiment,the geological insights were obtained in three aspects.First,the pore-throat structure of carbonate is controlled by lithology and initial pore-throat structure,and fluid type,concentration and dissolution duration determine the degree of dissolution.The dissolution process exhibits two evolution patterns.The dissolution scale is positively correlated to the temperature and pressure,and the pore-forming peak period aligns well with the hydrocarbon generation peak period.Second,the dissolution potential of dolomite in an open flow system is greater than that of limestone,and secondary dissolved pores formed continuously are controlled by the type and concentration of acidic fluids and the initial physical properties.These pores predominantly distribute along pre-existing pore/fracture zones.Third,in a nearly closed diagenetic system,after the chemical reaction between acidic fluids and carbonate rock reaches saturation and dynamic equilibrium,the pore structure no longer changes,keeping pre-existing pores well-preserved.These findings have important guiding significance for the evaluation of pore-throat structure and development potential of deep to ultra-deep carbonate reservoirs,and the prediction of main controlling factors and distribution of high-quality carbonate reservoirs.展开更多
In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how fac...In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments.展开更多
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical cha...Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
This paper proposes a method for creating a three-dimensional(above-ground and underground)fracture network in deep coalbed methane(CBM)reservoirs,which is the directional fracturing by slotted hydraulic blasting in u...This paper proposes a method for creating a three-dimensional(above-ground and underground)fracture network in deep coalbed methane(CBM)reservoirs,which is the directional fracturing by slotted hydraulic blasting in underground drilling.First,theoretical analysis was conducted to explain the mechanism by which the slotted borehole enables the separation and incidence of explosive shock wave at the slot tip,resulting in the superposition of two sub-stress waves to cause directional fracture and damage to the rock.Then,LS-DYNA was used to simulate the process of directional fracturing by slotted hydraulic blasting to verify the theoretical mechanism.Finally,similar simulation experiments were performed on traditional blasting and slotted hydraulic blasting to confirm the directional fracturing effect of the proposed method.The results indicate that the slotted hydraulic blasting method can predominate the fracture orientation under formation stress,creating extensive directional fractures in rocks in the slot direction.This study is supplemental to the efforts on directional fracturing of rocks and provides a new approach for efficient exploitation of CBM.展开更多
Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ...Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.展开更多
With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges a...With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges and opportunities.The purpose of this paper is to discuss the application and construction path of virtual simulation experimental teaching in the Securities Investment course.Firstly,it analyses the problems existing in the teaching of traditional securities investment courses,such as the disconnection between theory and practice and the single teaching mode.In order to solve these problems,this paper puts forward the necessity of introducing virtual simulation experimental teaching and details the specific application path of virtual simulation experimental teaching in the Securities Investment course.展开更多
Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,a...Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.展开更多
The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of th...The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.展开更多
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay...To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.展开更多
Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation ...Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs.展开更多
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniqu...The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure.展开更多
Using physical simulation models, rainfall-induced landslides have been simulated under various rainfall intensities. During these simulations, we have monitored the physical and mechanical behaviors of the landslide ...Using physical simulation models, rainfall-induced landslides have been simulated under various rainfall intensities. During these simulations, we have monitored the physical and mechanical behaviors of the landslide over the slip surface at different heights of the model slopes, as well as taking the whole slope to identify its deformation and failure processes. The results show that the rainfall duration corresponding to the initiation of the debris landslide and is exponentially related to rainfall intensity. Corresponding to the three intervals of the rainfall intensity, there are three types of slope failure modes:(1) the small-slump failure at the leading edge of the slope;(2) the block-slump failure but sometimes there are large blocks sliding down;and(3) the bulk failure but sometimes there is the block-slump failure. Based on the total rainfall-lasting time and the associated proportion of failed mass volume, the early warning of debris landslide can be classified into five grades, i.e., red, orange to red, orange, yellow to orange and yellow, which correspond to the five slope failure modes, respectively.展开更多
It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation const...It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.展开更多
A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were:...A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.展开更多
Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivat...Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.展开更多
Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weig...Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea.展开更多
A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments o...A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.展开更多
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carri...Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.展开更多
基金Supported by the Joint Fund for Enterprise Innovation and Development of the National Natural Science Foundation of China(U23B20154)General Program of the National Natural Science Foundation of China(42372169)。
文摘To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation experimental device was developed for ultra-deep carbonate reservoirs.Carbonate rock samples from the Sichuan Basin and Tarim Basin were used to simulate the dissolution-precipitation process of deep to ultra-deep carbonate reservoirs in an analogous geological setting.This unit comprises four core modules:an ultra-high temperature,high pressure triaxial stress core holder module(temperature higher than 300°C,pressure higher than 150 MPa),a multi-stage continuous flow module with temperature-pressure regulation,an ultra-high temperature-pressure sapphire window cell and an in-situ high-temperature-pressure fluid property measurement module and real-time ultra-high temperature-pressure permeability detection module.The new experimental device was used for simulation experiment,the geological insights were obtained in three aspects.First,the pore-throat structure of carbonate is controlled by lithology and initial pore-throat structure,and fluid type,concentration and dissolution duration determine the degree of dissolution.The dissolution process exhibits two evolution patterns.The dissolution scale is positively correlated to the temperature and pressure,and the pore-forming peak period aligns well with the hydrocarbon generation peak period.Second,the dissolution potential of dolomite in an open flow system is greater than that of limestone,and secondary dissolved pores formed continuously are controlled by the type and concentration of acidic fluids and the initial physical properties.These pores predominantly distribute along pre-existing pore/fracture zones.Third,in a nearly closed diagenetic system,after the chemical reaction between acidic fluids and carbonate rock reaches saturation and dynamic equilibrium,the pore structure no longer changes,keeping pre-existing pores well-preserved.These findings have important guiding significance for the evaluation of pore-throat structure and development potential of deep to ultra-deep carbonate reservoirs,and the prediction of main controlling factors and distribution of high-quality carbonate reservoirs.
基金Supported by the National Undergraduate Innovation Training Program(Project No.202211437036).
文摘In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments.
文摘Most of the existing studies on tunnel blast wave are based on spherical or grouped charges, however,conventional weapons are mostly cylindrical rather than spherical. In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method, this study carried out experimental and numerical research. Initially, external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance. Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges. To address this, an equivalent coefficient κ based on the spherical charges was proposed for the cylindrical charges. Subsequently, numerical simulations were conducted for the experimental conditions, and the numerical simulation results match the experiments well. Through numerical calculations, the reliability of the equivalent coefficient κ under the experimental conditions was verified, and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially, resulting in more explosion energy entering the tunnel, which is the fundamental reason for the increase in tunnel blast wave loads. Additionally, analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient κ. Finally, through more than one hundred sets of numerical calculation results, the impact of the proportional distance λ and the ratio of charge mass to the tunnel cross-section dimension φ on the equivalence coefficients κ was investigated. An empirical formula for the equivalence coefficient κ was derived through fitting, and the accuracy of the formula was validated through literature experimental results. The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金supported by the Science and Technology Department of Guizhou Province Fund(Qiankehe Basic-ZK[2023]Normal-446 and Qiankehe Basic-ZK[2023]Normal-445)Liupanshui Science and Technology Bureau Fund(52020-2022-PT-15)the Education Department of Guizhou Province Fund(Youth Science and Technology Talent Development Project Qianjiaoji[2024]150).
文摘This paper proposes a method for creating a three-dimensional(above-ground and underground)fracture network in deep coalbed methane(CBM)reservoirs,which is the directional fracturing by slotted hydraulic blasting in underground drilling.First,theoretical analysis was conducted to explain the mechanism by which the slotted borehole enables the separation and incidence of explosive shock wave at the slot tip,resulting in the superposition of two sub-stress waves to cause directional fracture and damage to the rock.Then,LS-DYNA was used to simulate the process of directional fracturing by slotted hydraulic blasting to verify the theoretical mechanism.Finally,similar simulation experiments were performed on traditional blasting and slotted hydraulic blasting to confirm the directional fracturing effect of the proposed method.The results indicate that the slotted hydraulic blasting method can predominate the fracture orientation under formation stress,creating extensive directional fractures in rocks in the slot direction.This study is supplemental to the efforts on directional fracturing of rocks and provides a new approach for efficient exploitation of CBM.
基金Chongqing Institute of Technology’s 2022 Virtual Simulation Experiment“Golden Course”Construction Project“Virtual Simulation Experiment of Urban Overpass Vehicle Passage”2023 Teaching Method Reform and“Information Technology+”Smart Teaching Special Research Project Information Technology Multi-Dimensional Research Results of“Enabling Virtual Simulation Experiment Smart Teaching Reform and Practice”。
文摘Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.
基金The 2024 Hankou University School-Level Teaching Reform Research Project“Research on the Application of Virtual Simulation Experimental Teaching in the Course of Securities Investment”(Project number:2024JY43)。
文摘With the rapid development of information technology and the increasing complexity of the financial market,the teaching methods and means of the Securities Investment course in universities are facing new challenges and opportunities.The purpose of this paper is to discuss the application and construction path of virtual simulation experimental teaching in the Securities Investment course.Firstly,it analyses the problems existing in the teaching of traditional securities investment courses,such as the disconnection between theory and practice and the single teaching mode.In order to solve these problems,this paper puts forward the necessity of introducing virtual simulation experimental teaching and details the specific application path of virtual simulation experimental teaching in the Securities Investment course.
基金Supported by the CNPC Major Science and Technology Project(2021DJ1806).
文摘Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.
基金supported by the China Petroleum Science and Technology Major Project(No.2023ZZ18-03).
文摘The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China,but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group,especially the mudstone at the top of the Sangonghe Formation,are unclear.Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives,this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences.Our results indicate that the source rocks of the Xishanyao Formation include mudstone,carbonaceous mudstone and coal,and the quality of the source rocks is highly heterogeneous;the source rocks of the Sangonghe Formation are mainly composed of mudstone,and it is a good gas source rock.Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation.The hydrocarbon generation process can be divided into three stages for both formations,but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone.A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution,of which methane is dominant,mainly from the demethylation reaction of mature kerogen.On the other hand,a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution,of which light hydrocarbon and wet gas are dominant,mainly from the early cracking stage of kerogen.This difference may be attributed to the structure of kerogen.The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs,while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs.The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42072150)
文摘To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.
基金supported by the National Natural Science Foundation of China (Nos.52374064,51974347,52474072)the Shandong Provincial Universities Youth Innovation and Technology Support Program (2022KJ065)。
文摘Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs.
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.
基金supported by the National Natural Science Foundation of China(No.50974029)the Doctoral Program of the Ministry of Education(No.20070220001)Province Natural Science Foundation of Heilongjiang of China(No.E200816)
文摘The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure.
基金This research is financially supported by the National Natural Science Foundation of China(Nos.41807274,41630640)the Sichuan Science and Technology Program(No.2019E0R2230230)the Scientific Foundation of the Chinese Academy of Sciences(No.KFJ-STS-QYZD-172)。
文摘Using physical simulation models, rainfall-induced landslides have been simulated under various rainfall intensities. During these simulations, we have monitored the physical and mechanical behaviors of the landslide over the slip surface at different heights of the model slopes, as well as taking the whole slope to identify its deformation and failure processes. The results show that the rainfall duration corresponding to the initiation of the debris landslide and is exponentially related to rainfall intensity. Corresponding to the three intervals of the rainfall intensity, there are three types of slope failure modes:(1) the small-slump failure at the leading edge of the slope;(2) the block-slump failure but sometimes there are large blocks sliding down;and(3) the bulk failure but sometimes there is the block-slump failure. Based on the total rainfall-lasting time and the associated proportion of failed mass volume, the early warning of debris landslide can be classified into five grades, i.e., red, orange to red, orange, yellow to orange and yellow, which correspond to the five slope failure modes, respectively.
基金the National Natural Science Foundation of China (40201009 and 90201007)Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
文摘It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.
基金the National Science Foundation.USA.(NSF Grant EAR 02-10820)the National Natural ScienceFoundation of China(NSFC Grant No.40173031)+1 种基金the International Cooperative Research Foundation of NSFC(Grant No.2002-40210104086) the Ph.D.Base Foundation of the Ministry of Education of China(Grant No.20020284036).
文摘A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.
基金Supported by the Major State Basic Research Development Program Fund (2010CB226801) the National Natural Science Foundation of China (50704034) the State Key Laboratory of Coal Resources and Safe Mining Open Research Fund (SKLCRSM11KFB08)
文摘Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.
基金supported financially by the National Key R&D Program of China(No.2017YFC0307600)the Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0207)+3 种基金the National Natural Science Foundation of China(No.41906067)the China Postdoctoral Science Foundation(No.2018M632634)the Natural Science Foundation of Shandong Province of China(No.ZR2019BD051)the Marine Geological Survey Program(Nos.DD20190221 and DD20190231)。
文摘Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea.
文摘A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.
文摘Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.