Using the simulations performed by 15 cli mate models under the latest protocol of the Paleoclimate Modeling Intercomparison Project(PMIP)Phase 3(PMIP3),the authors revisited the annual and seasona temperature changes...Using the simulations performed by 15 cli mate models under the latest protocol of the Paleoclimate Modeling Intercomparison Project(PMIP)Phase 3(PMIP3),the authors revisited the annual and seasona temperature changes over China during the mid-Holocene Similar to the previous results produced by PMIP Phase 1(PMIP1)and 2(PMIP2)models,14(15)of the 15 PMIP3models reproduced colder annual(boreal winter and spring)temperature in response to mid-Holocene insola tion changes,with an average cooling of 0.33 K(1.31 K and 1.58 K)over China.The mid-Holocene boreal sum mer(autumn)temperature increased in all(13)of the 15PMIP3 models,with an average warming of 1.02 K(0.61K)at the national scale.Those changes simulated by the PMIP3 models were similar to those from the PMIP2simulations but generally weaker than those from the PMIP1 models.A considerable mismatch still existed between the simulated cooling by the PMIP3 models and the reconstructed warming for annual and winter tem peratures over China during the mid-Holocene,as wa also the case between the previous PMIP1/2 simulation and proxy data.展开更多
In this paper, the single-pass hot compression experiment of titanium clad steel plate was carried out by Gleeble-3500 thermal mechanics simulation test machine,and the effect of deformation temperature(T), strain ra...In this paper, the single-pass hot compression experiment of titanium clad steel plate was carried out by Gleeble-3500 thermal mechanics simulation test machine,and the effect of deformation temperature(T), strain rate(ε),thickness ratio(k), and friction coefficient(l) on flow pattern of the metal and stress in the deformation zone was analyzed.The results show that the metal flow behavior and the stress during compressive deformation depend strongly on the deformation temperature. At 800 and 850 °C, the bimetal can flow uniformly, while at 900 °C, the TA2 flows faster than Q235 B, and the phenomenon of TA2 wrapping Q235 B is observed. The metal flow of the bimetal material will coordinate each other through the bonding interface. It is noted that the stress increases with the increase of the ε and l and decreases when the metal flows along the contact area.展开更多
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m...As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41222034)
文摘Using the simulations performed by 15 cli mate models under the latest protocol of the Paleoclimate Modeling Intercomparison Project(PMIP)Phase 3(PMIP3),the authors revisited the annual and seasona temperature changes over China during the mid-Holocene Similar to the previous results produced by PMIP Phase 1(PMIP1)and 2(PMIP2)models,14(15)of the 15 PMIP3models reproduced colder annual(boreal winter and spring)temperature in response to mid-Holocene insola tion changes,with an average cooling of 0.33 K(1.31 K and 1.58 K)over China.The mid-Holocene boreal sum mer(autumn)temperature increased in all(13)of the 15PMIP3 models,with an average warming of 1.02 K(0.61K)at the national scale.Those changes simulated by the PMIP3 models were similar to those from the PMIP2simulations but generally weaker than those from the PMIP1 models.A considerable mismatch still existed between the simulated cooling by the PMIP3 models and the reconstructed warming for annual and winter tem peratures over China during the mid-Holocene,as wa also the case between the previous PMIP1/2 simulation and proxy data.
基金financially supported by the Ministry of Science and Technology ‘‘Twelfth Five-Year’’ Plan for Science & Technology Support (No. 2011BAE22B00)
文摘In this paper, the single-pass hot compression experiment of titanium clad steel plate was carried out by Gleeble-3500 thermal mechanics simulation test machine,and the effect of deformation temperature(T), strain rate(ε),thickness ratio(k), and friction coefficient(l) on flow pattern of the metal and stress in the deformation zone was analyzed.The results show that the metal flow behavior and the stress during compressive deformation depend strongly on the deformation temperature. At 800 and 850 °C, the bimetal can flow uniformly, while at 900 °C, the TA2 flows faster than Q235 B, and the phenomenon of TA2 wrapping Q235 B is observed. The metal flow of the bimetal material will coordinate each other through the bonding interface. It is noted that the stress increases with the increase of the ε and l and decreases when the metal flows along the contact area.
基金supported by the State Grid Science and Technology Project (Title: Technology Research On Large Scale EMT Real-time simulation customized platform, FX71-17-001)
文摘As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.