The prebiotic effects of hyaluronan(HA)are widely recognized,contributing to improved gut health and immune modulation.Despite its extensive use as dietary supplement,the specific interactions between HA oligosacchari...The prebiotic effects of hyaluronan(HA)are widely recognized,contributing to improved gut health and immune modulation.Despite its extensive use as dietary supplement,the specific interactions between HA oligosaccharides(o-HAs)and the gut microbiome remain largely unexplored.To investigate its role and metabolic fate in gut homeostasis,200 mg/day of o-HAs(average molecule weight 1 kDa)were added to an automated computer-controlled SIMulator of the Gastrointestinal tract(SIMGI).The results revealed a significant reshaping of the intestinal flora composition by o-HAs,notably reducing the Firmicutes/Bacteroides ratio.Fermentation of o-HAs by gut microbiota significantly increased the abundance of Bifidobacterium,Prevotellaceae_Prevotella,Dialister,Eubacterium,and Sutterella,but decreased that of Catenibacterium,Oscillospira,Klebsiella,and Citrobacter(P<0.05).This corresponded with significant enhancements in the content of short-chain fatty acids(SCFAs)such as acetic acid,propionic acid and n-butyric acid,highlighting the significant impact of o-HAs at the genus level.Furthermore,analysis of microbial function predicted the downregulation of pathological events in nine human diseases,particularly infectious ones(parasitic and bacterial).Potential inhibitions were observed in metabolic pathways associated with pentose and glucuronate interconversions as well as cationic antimicrobial peptide resistance.These findings underscore the in vitro prebiotic effects of o-HAs and their potential relevance in managing diverticular diseases or preventing metabolic disorders through the regulation of gut microbiota.展开更多
A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45...A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.展开更多
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling p...BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
In this study,naringin was encapsulated in microspheres and its simulated digestive behavior in vitro was examined.Then naringin microspheres was added in yogurt to investigate the rheology and antioxidant activities....In this study,naringin was encapsulated in microspheres and its simulated digestive behavior in vitro was examined.Then naringin microspheres was added in yogurt to investigate the rheology and antioxidant activities.The results indicated that encapsulating naringin in microspheres delayed its digestion in the stomach,allowing more release in the intestinal part.All kinds of yogurt were solid-like in nature and the addition of microspheres increased the elastic modulus and viscosity.The naringin and microspheres incorporation enhanced the total phenolic content of the yogurt to 6.7 and 8.8 mg of gallic acid equivalent/mL,respectively.All kinds of yogurt demonstrated more than 80%scavenging ability for hydroxyl radicals at 20μL whey/mL.The addition of microspheres improved the DPPH radical scavenging ability of yogurt.This study provides a new idea for the application of polyphenols in food and the development of functional yogurt.展开更多
Heating,Ventilation,andAir Conditioning(HVAC)systems are critical formaintaining thermal comfort in office environments which also crucial for occupant well-being and productivity.This study investigates the impact of...Heating,Ventilation,andAir Conditioning(HVAC)systems are critical formaintaining thermal comfort in office environments which also crucial for occupant well-being and productivity.This study investigates the impact of integrating ceiling fans with higher air conditioning setpoints on thermal comfort and energy efficiency in office environments.Field measurements and questionnaire surveys were conducted to evaluate thermal comfort and energysaving potential under varying conditions.Results show that increasing the AC setpoint from 25○C to 27○C,combined with ceiling fan operation,reduced power consumption by 10%,achieving significant energy savings.Survey data confirmed that 85%of participants reported consistent thermal sensations across all conditions,with ceiling fans effectively compensating for higher setpoints through enhanced air circulation.CFDsimulations revealed that mediumspeed ceiling fan operation produced the most uniformairflowdistribution,with an average air velocity of 0.45 m/s,and minimized temperature variations,ensuring balanced thermal conditions.Temperature analysis showed a reduction in hotspots and cold zones,maintaining an average temperature deviation of less than±0.5○C.Predicted Mean Vote(PMV)evaluations at a 27○C setpoint indicated improved thermal comfort,with average PMV values around−0.3,corresponding to a“neutral”thermal sensation.These findings demonstrate the effectiveness of integrating ceiling fans with HVAC systems in achieving energy efficiency and occupant comfort,offering a sustainable approach to reducing AC energy consumption in office environments.展开更多
To explore atomic-level phenomena in the Cu-Ni-Sn alloy,a second nearest-neighbor modified embedded-atom method(2NN MEAM)potential has been developed for the Cu-Ni-Sn system,building upon the work of other researchers...To explore atomic-level phenomena in the Cu-Ni-Sn alloy,a second nearest-neighbor modified embedded-atom method(2NN MEAM)potential has been developed for the Cu-Ni-Sn system,building upon the work of other researchers.This potential demonstrates remarkable accuracy in predicting the lattice constant,with a relative error of less than 0.5%when compared to density functional theory(DFT)results,and it achieves a 10%relative error in the enthalpy of formation compared to experimental data,marking substantial advancements over prior models.The bulk modulus is predicted with a relative error of 8%compared to DFT.Notably,the potential effectively simulates the processes of melting and solidification of Cu-15Ni-8Sn,with a simulated melting point that closely aligns with the experimental value,within a 7.5%margin.This serves as a foundation for establishing a 2NN MEAM potential for a flawless Cu-Ni-Sn system and its microalloying systems.展开更多
This study employs the Smoothed Particle Hydrodynamics(SPH)method to develop a computational fluid dynamics(CFD)model for analyzing the interaction between rogue waves and mooring systems.Four floating body configurat...This study employs the Smoothed Particle Hydrodynamics(SPH)method to develop a computational fluid dynamics(CFD)model for analyzing the interaction between rogue waves and mooring systems.Four floating body configurations are investigated:(1)dual rectangular prisms,(2)rectangular prism–sphere composites,(3)sphere–rectangular prism composites,and(4)dual spheres.These configurations are systematically evaluated under varying mooring conditions to assess their hydrodynamic performance and wave attenuation capabilities.The model accurately captures the complex fluid–structure interaction dynamics between moored floating breakwaters and incident wave fields.Among the configurations,the dual rectangular prism system demonstrates superior performance in both wave dissipation and mooring force reduction.Under conditions involving dual wave makers,the influence of floating body shape and number on wave height is found to be minimal.However,dual-body arrangements consistently outperform single-body setups in terms of both energy dissipation and structural stability.From a cost-efficiency perspective,the configuration comprising two rectangular prisms connected via a single mooring system offers significant advantages in material usage and deployment feasibility.展开更多
This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho...This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.展开更多
A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first...A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first part, the classical manoeuvring models, such as the Abkowitz model, MMG, Nomoto and their revised versions, are revisited and the model structure with the hydrodynamic coefficients is also presented.Then, manoeuvring tests, including both the scaled model tests and sea trials, are introduced with the fact that the test data is critically important to obtain reliable results using parameter estimation methods. In the last part, selected papers published in journals and international conferences are reviewed and the statistical analysis of the manoeuvring models, test data, system identification methods and environmental disturbances used in the paper is presented.展开更多
In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion s...In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot ...Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system.展开更多
With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce th...With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements.These reinforcements consist of geogrids,geotextiles,geocells,etc.,all of which are in the geosynthetic family.Among these geosynthetic families,geocell performs better in soil-reinforced beds.In this study,we proposed the nine types of bioinspired geocells to improve the soil beds.For this purpose,a total of twenty numerical models were calculated via FLAC3D after validating the la-boratory model tests in the literature.The numerical results demonstrated that,except for the circular type,the performance of other geocell forms regarding increased bearing capacity was nearly identical.Regarding diffusion angles,only the circular and honeycomb geocells exhibited larger diffusion angles.The opening pocket diameter more significantly influenced the stress and strain of geocells.Geocells with nearly circular shapes,such as circular,honeycomb,hexagonal,and square,typically demonstrated higher confining stresses within the geocell walls.Conversely,for shapes that deviate from the circular form,such as dia-mond,re-entrant,and double V-shaped designs,the irregularity of the pocket shape could cause an uneven distribution of confining stresses,potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.展开更多
A thermionic gun is endowed with a long bunch tail,which presents challenges for the compact terahertz free electron laser(FEL)facility at the Huazhong University of Science and Technology.Owing to a large energy spre...A thermionic gun is endowed with a long bunch tail,which presents challenges for the compact terahertz free electron laser(FEL)facility at the Huazhong University of Science and Technology.Owing to a large energy spread,the tail particles do not contribute to the radiation.In the original design,an x-direction slit is used in the dispersive section of the transport line to remove the tail particles.This paper presents an improved scheme to remove the tail by introducing an RF beam chopper system at the exit of the electron gun,to prevent a significant number of tail particles from entering the linac.The facility remains compact while effectively removing the tail of the bunch.The parameters of the beam chopper system are designed.Bunch parameters and radiation performance are analyzed via a start-to-end simulation.The findings indicate that 43%of the particles can pass through the beam chopper system for subsequent acceleration and transport,which saves the RF power,reduces beam loss in the linac,reduces background noise,and suppresses the sideband instability.Simultaneously,the beam chopper system causes an increase in beam emittance,energy spread,and an offset in the center of the bunch.These effects can be mitigated by a solenoid,linac,and steering coils.The simulation results for the FEL show that the micro-pulse energy is greater than 1.1μJ in the frequency range of 2.8-9.7 THz,and the maximum micro-pulse energy is 1.28μJ.展开更多
Objective:Critically appraise the current state of alternate temporal bone training techniques(virtual reality(VR)simulation,3D-printed models,and mental practice(MP))compared to traditional and cadaver methods.Databa...Objective:Critically appraise the current state of alternate temporal bone training techniques(virtual reality(VR)simulation,3D-printed models,and mental practice(MP))compared to traditional and cadaver methods.Databases Reviewed:PubMed,Cochrane,Web of Science.Methods:Search terms utilized“temporal bone training”,“temporal bone surgical modalities”,and“training modalities temporal bone surgery”with“3D”,“rapid prototyp*”,“stereolithography”,“additive manufact*”,“plaster”,“VR”,“virtual reality”,“animal model”,“animal temporal bone”,and“synthetic”with“AND”for all literature.Exclusion criteria:non-ENT,non-English,and did not compare against alternative/traditional methods.Results:10 studies were included with 322 participants(83.9%ENT residents and 16.1%medical students).Costs include the FDM printer($300),materials($5/3D model),and<$5,000 for freeware simulator hardware.The Welling scale was used in 50%of studies.Alternate methods produced comparable or improved assessment scores to traditional and cadaver methods.Injuries were reported in three VR studies,with two reported significantly lower injury scores in the intervention groups.Time to completion was not significantly different in four VR studies,except for one finding that the time to visualize the incus was significantly lower in the intervention group.Performance after MP was not statistically different.Conclusion:More data are needed to assess whether the alternate methods are comparable to cadaveric dissection in temporal bone training.3D models and VR simulation demonstrate promising potential for novel trainees to acquire the basic skills and produce performance comparable to or significantly better than traditional methods of lectures,textbooks,CT images,and operative videos.展开更多
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an...With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.展开更多
This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilit...This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilities among electrical engineering majors,based on the independently developed virtual simulation experimental teaching platform for Electric Machine and Drive,a stepped practical teaching process consisting of“classroom teaching-experimental teaching-comprehensive training-scientific inquiry”has been elaborately designed.A hierarchical practical teaching model for the second classroom has also been established.With teaching objectives as the optimization index,the teaching content,methods and means have been optimized;the teaching process has been organized and implemented in the form of team collaboration,thus constructing a comprehensive,stepped,hierarchical,and closed-loop innovative practical teaching system.This achievement provides references and assistance for the practical teaching of the same or similar majors in other colleges and universities.展开更多
基金financially supported by the National Natural Science Foundation of China(32000058)the Fundamental Research Funds for the Central Universities(JUSRP622003)。
文摘The prebiotic effects of hyaluronan(HA)are widely recognized,contributing to improved gut health and immune modulation.Despite its extensive use as dietary supplement,the specific interactions between HA oligosaccharides(o-HAs)and the gut microbiome remain largely unexplored.To investigate its role and metabolic fate in gut homeostasis,200 mg/day of o-HAs(average molecule weight 1 kDa)were added to an automated computer-controlled SIMulator of the Gastrointestinal tract(SIMGI).The results revealed a significant reshaping of the intestinal flora composition by o-HAs,notably reducing the Firmicutes/Bacteroides ratio.Fermentation of o-HAs by gut microbiota significantly increased the abundance of Bifidobacterium,Prevotellaceae_Prevotella,Dialister,Eubacterium,and Sutterella,but decreased that of Catenibacterium,Oscillospira,Klebsiella,and Citrobacter(P<0.05).This corresponded with significant enhancements in the content of short-chain fatty acids(SCFAs)such as acetic acid,propionic acid and n-butyric acid,highlighting the significant impact of o-HAs at the genus level.Furthermore,analysis of microbial function predicted the downregulation of pathological events in nine human diseases,particularly infectious ones(parasitic and bacterial).Potential inhibitions were observed in metabolic pathways associated with pentose and glucuronate interconversions as well as cationic antimicrobial peptide resistance.These findings underscore the in vitro prebiotic effects of o-HAs and their potential relevance in managing diverticular diseases or preventing metabolic disorders through the regulation of gut microbiota.
基金primarily supported by the Ministry of Science and Technology of the People's Republic of China (MOST)(Grant No. 2018YFC1507303)National Natural Science Foundation of China (Grant Nos. 419505044,41941007, and 42230607)+1 种基金by the Talent Research Start-Up Fund of Nanjing University of Aeronautics and Astronautics(Grant No. 1007-90YAH22046)supported by The High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics。
文摘A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.
文摘BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金funded by the People’s Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)the Department of Education of Liaoning Province(Natural Science,Strategic Industrialization Project,LJ212410163061)the Liaoning Province College Students Innovation and Entrepreneurship Training Program(S202410163077).
文摘In this study,naringin was encapsulated in microspheres and its simulated digestive behavior in vitro was examined.Then naringin microspheres was added in yogurt to investigate the rheology and antioxidant activities.The results indicated that encapsulating naringin in microspheres delayed its digestion in the stomach,allowing more release in the intestinal part.All kinds of yogurt were solid-like in nature and the addition of microspheres increased the elastic modulus and viscosity.The naringin and microspheres incorporation enhanced the total phenolic content of the yogurt to 6.7 and 8.8 mg of gallic acid equivalent/mL,respectively.All kinds of yogurt demonstrated more than 80%scavenging ability for hydroxyl radicals at 20μL whey/mL.The addition of microspheres improved the DPPH radical scavenging ability of yogurt.This study provides a new idea for the application of polyphenols in food and the development of functional yogurt.
基金support by the National Science and Technology Council under Grant No.NSTC 112-2221-E-167-017-MY3.
文摘Heating,Ventilation,andAir Conditioning(HVAC)systems are critical formaintaining thermal comfort in office environments which also crucial for occupant well-being and productivity.This study investigates the impact of integrating ceiling fans with higher air conditioning setpoints on thermal comfort and energy efficiency in office environments.Field measurements and questionnaire surveys were conducted to evaluate thermal comfort and energysaving potential under varying conditions.Results show that increasing the AC setpoint from 25○C to 27○C,combined with ceiling fan operation,reduced power consumption by 10%,achieving significant energy savings.Survey data confirmed that 85%of participants reported consistent thermal sensations across all conditions,with ceiling fans effectively compensating for higher setpoints through enhanced air circulation.CFDsimulations revealed that mediumspeed ceiling fan operation produced the most uniformairflowdistribution,with an average air velocity of 0.45 m/s,and minimized temperature variations,ensuring balanced thermal conditions.Temperature analysis showed a reduction in hotspots and cold zones,maintaining an average temperature deviation of less than±0.5○C.Predicted Mean Vote(PMV)evaluations at a 27○C setpoint indicated improved thermal comfort,with average PMV values around−0.3,corresponding to a“neutral”thermal sensation.These findings demonstrate the effectiveness of integrating ceiling fans with HVAC systems in achieving energy efficiency and occupant comfort,offering a sustainable approach to reducing AC energy consumption in office environments.
基金sponsored by the Science and Technology Foundation of Guizhou Provincial Education Department(No.QJJ[2024]60)Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC[2024]Youth 214)+1 种基金Science and Technology Foundation of Guizhou Minzu University(No.GZMUZK[2024]QD21)Research Projects of Anshun University(No.asxybsjj202413).
文摘To explore atomic-level phenomena in the Cu-Ni-Sn alloy,a second nearest-neighbor modified embedded-atom method(2NN MEAM)potential has been developed for the Cu-Ni-Sn system,building upon the work of other researchers.This potential demonstrates remarkable accuracy in predicting the lattice constant,with a relative error of less than 0.5%when compared to density functional theory(DFT)results,and it achieves a 10%relative error in the enthalpy of formation compared to experimental data,marking substantial advancements over prior models.The bulk modulus is predicted with a relative error of 8%compared to DFT.Notably,the potential effectively simulates the processes of melting and solidification of Cu-15Ni-8Sn,with a simulated melting point that closely aligns with the experimental value,within a 7.5%margin.This serves as a foundation for establishing a 2NN MEAM potential for a flawless Cu-Ni-Sn system and its microalloying systems.
基金funding from the National Natural Science Foundation of China(No.12462028).
文摘This study employs the Smoothed Particle Hydrodynamics(SPH)method to develop a computational fluid dynamics(CFD)model for analyzing the interaction between rogue waves and mooring systems.Four floating body configurations are investigated:(1)dual rectangular prisms,(2)rectangular prism–sphere composites,(3)sphere–rectangular prism composites,and(4)dual spheres.These configurations are systematically evaluated under varying mooring conditions to assess their hydrodynamic performance and wave attenuation capabilities.The model accurately captures the complex fluid–structure interaction dynamics between moored floating breakwaters and incident wave fields.Among the configurations,the dual rectangular prism system demonstrates superior performance in both wave dissipation and mooring force reduction.Under conditions involving dual wave makers,the influence of floating body shape and number on wave height is found to be minimal.However,dual-body arrangements consistently outperform single-body setups in terms of both energy dissipation and structural stability.From a cost-efficiency perspective,the configuration comprising two rectangular prisms connected via a single mooring system offers significant advantages in material usage and deployment feasibility.
基金supported in part by the Doctoral Initiation Fund of Nanchang Hangkong University(No.EA202403107)Jiangxi Province Early Career Youth Science and Technology Talent Training Project(No.CK202403509).
文摘This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.
基金the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineeringfinanced by the Portuguese Foundation for Science and Technology (Fundacao para a Ciência e Tecnologia-FCT) under contract UIDB/UIDP/00134/2020。
文摘A state-of-the-art review is presented of mathematical manoeuvring models for surface ships and parameter estimation methods that have been used to build mathematical manoeuvring models for surface ships. In the first part, the classical manoeuvring models, such as the Abkowitz model, MMG, Nomoto and their revised versions, are revisited and the model structure with the hydrodynamic coefficients is also presented.Then, manoeuvring tests, including both the scaled model tests and sea trials, are introduced with the fact that the test data is critically important to obtain reliable results using parameter estimation methods. In the last part, selected papers published in journals and international conferences are reviewed and the statistical analysis of the manoeuvring models, test data, system identification methods and environmental disturbances used in the paper is presented.
基金supported by National Natural Science Foundation of China(No.11975261)。
文摘In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
基金supported by the German Federal Ministry for Economic Affairs and Climate Action[BMWK SimBench-Sektor project,grant number 03EI1058C].
文摘Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system.
基金financially supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME-JBGS2403)the National Natural Science Foundation of China(No.42477205)the Hubei Provincial Innovation Group Project(No.2023AFA019).
文摘With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements.These reinforcements consist of geogrids,geotextiles,geocells,etc.,all of which are in the geosynthetic family.Among these geosynthetic families,geocell performs better in soil-reinforced beds.In this study,we proposed the nine types of bioinspired geocells to improve the soil beds.For this purpose,a total of twenty numerical models were calculated via FLAC3D after validating the la-boratory model tests in the literature.The numerical results demonstrated that,except for the circular type,the performance of other geocell forms regarding increased bearing capacity was nearly identical.Regarding diffusion angles,only the circular and honeycomb geocells exhibited larger diffusion angles.The opening pocket diameter more significantly influenced the stress and strain of geocells.Geocells with nearly circular shapes,such as circular,honeycomb,hexagonal,and square,typically demonstrated higher confining stresses within the geocell walls.Conversely,for shapes that deviate from the circular form,such as dia-mond,re-entrant,and double V-shaped designs,the irregularity of the pocket shape could cause an uneven distribution of confining stresses,potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.
基金supported by the National Natural Science Foundation of China(No.12175077).
文摘A thermionic gun is endowed with a long bunch tail,which presents challenges for the compact terahertz free electron laser(FEL)facility at the Huazhong University of Science and Technology.Owing to a large energy spread,the tail particles do not contribute to the radiation.In the original design,an x-direction slit is used in the dispersive section of the transport line to remove the tail particles.This paper presents an improved scheme to remove the tail by introducing an RF beam chopper system at the exit of the electron gun,to prevent a significant number of tail particles from entering the linac.The facility remains compact while effectively removing the tail of the bunch.The parameters of the beam chopper system are designed.Bunch parameters and radiation performance are analyzed via a start-to-end simulation.The findings indicate that 43%of the particles can pass through the beam chopper system for subsequent acceleration and transport,which saves the RF power,reduces beam loss in the linac,reduces background noise,and suppresses the sideband instability.Simultaneously,the beam chopper system causes an increase in beam emittance,energy spread,and an offset in the center of the bunch.These effects can be mitigated by a solenoid,linac,and steering coils.The simulation results for the FEL show that the micro-pulse energy is greater than 1.1μJ in the frequency range of 2.8-9.7 THz,and the maximum micro-pulse energy is 1.28μJ.
文摘Objective:Critically appraise the current state of alternate temporal bone training techniques(virtual reality(VR)simulation,3D-printed models,and mental practice(MP))compared to traditional and cadaver methods.Databases Reviewed:PubMed,Cochrane,Web of Science.Methods:Search terms utilized“temporal bone training”,“temporal bone surgical modalities”,and“training modalities temporal bone surgery”with“3D”,“rapid prototyp*”,“stereolithography”,“additive manufact*”,“plaster”,“VR”,“virtual reality”,“animal model”,“animal temporal bone”,and“synthetic”with“AND”for all literature.Exclusion criteria:non-ENT,non-English,and did not compare against alternative/traditional methods.Results:10 studies were included with 322 participants(83.9%ENT residents and 16.1%medical students).Costs include the FDM printer($300),materials($5/3D model),and<$5,000 for freeware simulator hardware.The Welling scale was used in 50%of studies.Alternate methods produced comparable or improved assessment scores to traditional and cadaver methods.Injuries were reported in three VR studies,with two reported significantly lower injury scores in the intervention groups.Time to completion was not significantly different in four VR studies,except for one finding that the time to visualize the incus was significantly lower in the intervention group.Performance after MP was not statistically different.Conclusion:More data are needed to assess whether the alternate methods are comparable to cadaveric dissection in temporal bone training.3D models and VR simulation demonstrate promising potential for novel trainees to acquire the basic skills and produce performance comparable to or significantly better than traditional methods of lectures,textbooks,CT images,and operative videos.
基金supported by the Chinese Civil Aircraft Project(No.MJ-2017-S49).
文摘With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.
基金Project of the 14th Five-Year Plan for Educational Science in Liaoning Province(JG24DB234)Project of Graduate Education and Teaching Reform Research in Liaoning Province(LNYJG2023115)。
文摘This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilities among electrical engineering majors,based on the independently developed virtual simulation experimental teaching platform for Electric Machine and Drive,a stepped practical teaching process consisting of“classroom teaching-experimental teaching-comprehensive training-scientific inquiry”has been elaborately designed.A hierarchical practical teaching model for the second classroom has also been established.With teaching objectives as the optimization index,the teaching content,methods and means have been optimized;the teaching process has been organized and implemented in the form of team collaboration,thus constructing a comprehensive,stepped,hierarchical,and closed-loop innovative practical teaching system.This achievement provides references and assistance for the practical teaching of the same or similar majors in other colleges and universities.