期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
1
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification supporting vector machine Adjustable hyper-sphere
原文传递
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
2
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 Data fusion Fault diagnosis multi-class classification multi-class support vector machines Diesel engine
在线阅读 下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
3
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine
4
作者 Sulaiman Khan Shah Nazir +1 位作者 Habib Ullah Khan Anwar Hussain 《Computers, Materials & Continua》 SCIE EI 2021年第6期2831-2844,共14页
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang... During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model. 展开更多
关键词 Pashto multi-class support vector machine handwritten characters database ZONING and histogram of oriented gradients
在线阅读 下载PDF
Support vector machine-based multi-model predictive control 被引量:3
5
作者 Zhejing BAO Youxian SUN 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 Multi-model predictive control support vector machine network multi-class support vector machine Multi-model switching
在线阅读 下载PDF
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
6
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
在线阅读 下载PDF
Recognition and Classification of Pomegranate Leaves Diseases by Image Processing and Machine Learning Techniques 被引量:1
7
作者 Mangena Venu Madhavan Dang Ngoc Hoang Thanh +3 位作者 Aditya Khamparia Sagar Pande RahulMalik Deepak Gupta 《Computers, Materials & Continua》 SCIE EI 2021年第3期2939-2955,共17页
Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The ... Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves. 展开更多
关键词 Image enhancement image segmentation image processing for agriculture K-MEANS multi-class support vector machine
在线阅读 下载PDF
Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine 被引量:19
8
作者 Lü Qiang Cai Jianrong +2 位作者 Liu Bin Deng Lie Zhang Yajing 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第2期115-121,共7页
With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and... With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and the safety of robot,the identification of mature citrus fruit and obstacle is the priority of robotic harvesting.In this work,a machine vision system,which consisted of a color CCD camera and a computer,was developed to achieve these tasks.Images of citrus trees were captured under sunny and cloudy conditions.Due to varying degrees of lightness and position randomness of fruits and branches,red,green,and blue values of objects in these images are changed dramatically.The traditional threshold segmentation is not efficient to solve these problems.Multi-class support vector machine(SVM),which succeeds by morphological operation,was used to simultaneously segment the fruits and branches in this study.The recognition rate of citrus fruit was 92.4%,and the branch of which diameter was more than 5 pixels,could be recognized.The results showed that the algorithm could be used to detect the fruits and branches for CHR. 展开更多
关键词 CITRUS machine vision citrus harvesting robot(CHR) branch IDENTIFICATION multi-class support vector machine(SVM)
原文传递
Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects 被引量:4
9
作者 Mao-xiang CHU An-na WANG +1 位作者 Rong-fen GONG Mo SHA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期174-180,共7页
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam... Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples. 展开更多
关键词 multi-class classification least squares twin support vector machine error variable contribution WEIGHT binary tree strip steel surface
原文传递
环境污染区域测绘数据点云分类精简方法研究
10
作者 王娜 王楚维 +2 位作者 张小宏 罗霄 崔冰 《环境科学与管理》 CAS 2024年第1期124-128,共5页
针对环境污染区域的测绘点云数据由于具备随机性、模糊性特点,导致点云数据分类不准确的问题,提出一种基于点云分类器的环境污染区域测绘数据点云分类精简方法。在KNN点云采样算法中,设置k值划分数据,使用曼哈顿距离作为划分的判别标准... 针对环境污染区域的测绘点云数据由于具备随机性、模糊性特点,导致点云数据分类不准确的问题,提出一种基于点云分类器的环境污染区域测绘数据点云分类精简方法。在KNN点云采样算法中,设置k值划分数据,使用曼哈顿距离作为划分的判别标准,均衡采样密度,通过KNN算子提取独立点特征,利用支持向量机作为点云数据的分类器,实现环境污染区域测绘点云数据的精简分类。测试结果表明,在5种不同程度的污染等级下,设计的分类方法的各个指标均优于两种传统的分类方法,验证了设计方法在实际应用中的有效性。 展开更多
关键词 环境污染 区域测绘 点云数据 精简分类 支持向量机
在线阅读 下载PDF
基于粗糙集与支持向量机的变压器故障诊断法 被引量:26
11
作者 蒋延军 倪远平 《高电压技术》 EI CAS CSCD 北大核心 2008年第8期1755-1760,共6页
为了及时监测变压器潜伏性故障和准确诊断故障,提出了一种基于粗糙集与支持向量机相结合的电力变压器故障诊断的新方法。该法应用粗糙集理论将专家知识简化,获得简约诊断规则并对变压器进行粗诊断,然后以支持向量机准确的二类分类功能... 为了及时监测变压器潜伏性故障和准确诊断故障,提出了一种基于粗糙集与支持向量机相结合的电力变压器故障诊断的新方法。该法应用粗糙集理论将专家知识简化,获得简约诊断规则并对变压器进行粗诊断,然后以支持向量机准确的二类分类功能进行准确故障诊断。该方法实现了两种智能算法的有效互补,拥有粗糙集理论的处理不完备信息能力、简单快速以及支持向量机准确的二类分类功能,有效弥补了单一算法的不足,提高了故障诊断的快捷性和准确性,且降低了样本训练时间和诊断的复杂度。实验结果与改进的IEC三比值法比较,表明该方法有效、可行,具有较高的诊断准确率。 展开更多
关键词 粗糙集 知识简约 支持向量机 变压器 诊断模型 故障诊断
在线阅读 下载PDF
近红外光谱结合非线性模式识别方法进行牛奶中掺假物质的判别 被引量:8
12
作者 倪力军 钟霖 +2 位作者 张鑫 张立国 黄士新 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第10期2673-2678,共6页
以287例上海及上海周边地区牧场的生鲜奶作为真奶样本集组成3个真奶样品集合,配制了526例含有糊精(或淀粉)+三聚氰胺(或尿素、或硝酸铵)的掺假牛奶形成6个不同种类的假奶样品集合,其中糊精、淀粉在掺假奶中的含量为0.15%~0.45%;硝酸铵... 以287例上海及上海周边地区牧场的生鲜奶作为真奶样本集组成3个真奶样品集合,配制了526例含有糊精(或淀粉)+三聚氰胺(或尿素、或硝酸铵)的掺假牛奶形成6个不同种类的假奶样品集合,其中糊精、淀粉在掺假奶中的含量为0.15%~0.45%;硝酸铵、尿素和三聚氰胺的含量分别为700~2 100,524~1 572与365.5~1 096.5mg·kg-1,以保证掺假奶中凯氏定氮法测得的蛋白含量不低于3%。所有样本的近红外光谱均经过标准正态变换(SNV)预处理。将3个真奶样品集合和6个假奶样品集合进行不同的组合并对其采用改进与简化的K最邻近结点算法(IS-KNN)和改进与简化的支持向量机法(ν-SVM)建立了判别糊精、淀粉、三聚氰胺、尿素、硝酸铵这5类掺假物质的近红外判别模型,探寻掺假物质的浓度与识别正确率之间的关系。结果表明IS-KNN和ν-SVM两种方法对含三聚氰胺、尿素、硝酸铵的掺假牛奶的平均判别正确率分别在49.55%~51.01%,61.78%~68.79%与68.25%~73.51%区间波动,说明在该研究的掺假物浓度范围内,很难用近红外模型良好区分不同类型伪蛋白的掺假奶;IS-KNN和ν-SVM两种方法对含淀粉的掺假牛奶的判别正确率分别为92.33%与93.66%、对含糊精的掺假牛奶的平均判别正确率分别为77.29%与85.08%。从整体结果上来看ν-SVM法进行建模判别的结果大部分优于IS-KNN法进行建模判别的结果。对判别正确率与样品中掺假物质的含量水平分析表明近红外光谱结合非线性模式识别方法能良好地区分掺假奶中含量较高(0.15%~0.45%)的糊精和淀粉,而对含量偏低的三聚氰胺等伪蛋白的判别效果不佳,说明近红外光谱技术不适于鉴别牛奶中含量低于0.1%的掺假物质。 展开更多
关键词 近红外光谱 液态奶掺假物质判别 改进与简化的支持向量机方法 改进与简化的KNN方法
在线阅读 下载PDF
一种改进的简化支持向量机 被引量:4
13
作者 刘培胜 贾银山 韩云萍 《辽宁石油化工大学学报》 CAS 2009年第1期76-78,共3页
在针对大样本问题时,支持向量机所需训练时间和内存都急剧增加。为解决这一问题,提出一种改进的支持向量机简化方案。根据能成为支持向量的样本主要分布在边界上,该方案提出改进提取边界样本的方法提高约简率,保留边界样本并约简非边界... 在针对大样本问题时,支持向量机所需训练时间和内存都急剧增加。为解决这一问题,提出一种改进的支持向量机简化方案。根据能成为支持向量的样本主要分布在边界上,该方案提出改进提取边界样本的方法提高约简率,保留边界样本并约简非边界样本来减小样本规模。经实验验证,此约简方法约简效果好,泛化性能几乎没有损失,表明该方案有效可行。 展开更多
关键词 支持向量机 约简 样本
在线阅读 下载PDF
基于LS-SVM的捷联大失准角初始对准技术 被引量:3
14
作者 张涛 徐晓苏 《高技术通讯》 CAS CSCD 北大核心 2012年第1期88-93,共6页
针对捷联惯性导航系统(SINS)大失准角初始对准情况下非线性模型线性化导致模型不准确和影响对准精度的问题,设计了一种基于最小二乘支持向量机(LS-SVM)的大失准角对准算法。该方法采用基于加性四元数误差(AQE)的大失准角误差方... 针对捷联惯性导航系统(SINS)大失准角初始对准情况下非线性模型线性化导致模型不准确和影响对准精度的问题,设计了一种基于最小二乘支持向量机(LS-SVM)的大失准角对准算法。该方法采用基于加性四元数误差(AQE)的大失准角误差方程,采用简化的无迹卡尔曼滤波器(UKF)来模拟LS—SVM训练样本。捷联惯性导航系统和全球定位系统(GPS)的速度和位置误差作为LS-SVM的输入样本,简化UKF得到的失准角经小波去噪后作为输出样本。LS—SVM算法采用交叉验证法选择最佳的核函数参数。仿真结果表明,在大失准角下LS-SVM算法在对准时间和对准精度上与简化UKF和EKF相比均表现出较好的性能。 展开更多
关键词 捷联惯性导航系统(CINS) 初始对准 大失准角模型 最小二乘支持向量机 (LS-SVM) 简化无迹卡尔曼滤波(SUKF)
在线阅读 下载PDF
面向文档分类的LDE和简化SVM方法研究 被引量:1
15
作者 王自强 钱旭 孔敏 《计算机工程与应用》 CSCD 北大核心 2009年第22期1-3,6,共4页
为了快速准确地对文档进行分类,提出了一种基于局部鉴别嵌入LDE和简化SVM的高效文档分类算法。该算法首先利用LDE算法把高维文档数据投影到低维特征空间,然后在低维特征空间利用精简SVM进行分类。实验结果表明该算法具有分类准确率高和... 为了快速准确地对文档进行分类,提出了一种基于局部鉴别嵌入LDE和简化SVM的高效文档分类算法。该算法首先利用LDE算法把高维文档数据投影到低维特征空间,然后在低维特征空间利用精简SVM进行分类。实验结果表明该算法具有分类准确率高和运行速度快的优点。 展开更多
关键词 文档分类 局部鉴别嵌入 简化支持向量机 数据挖掘
在线阅读 下载PDF
基于互信息特征选择和LSSVM的网络入侵检测系统 被引量:9
16
作者 庄夏 《中国测试》 北大核心 2017年第11期134-139,共6页
为提高网络入侵检测系统(IDS)的性能,提出一种基于互信息特征选择和LSSVM的入侵检测方案(BMIFSLSSVM)。将采集到的网络连接数据进行规范化处理,并提出一种权衡考虑特征相关性和冗余性的新型互信息特征选择(BMIFS)方法,以此从网络连接数... 为提高网络入侵检测系统(IDS)的性能,提出一种基于互信息特征选择和LSSVM的入侵检测方案(BMIFSLSSVM)。将采集到的网络连接数据进行规范化处理,并提出一种权衡考虑特征相关性和冗余性的新型互信息特征选择(BMIFS)方法,以此从网络连接数据中选择出有效特征集。根据提取的训练样本特征集,利用最小二乘支持向量机(LSSVM)构建分类器和简化粒子群优化(SPSO)算法来优化LSSVM的核函数宽度系数和正则化参数,最后利用训练好的分类器进行入侵检测。仿真结果表明:提出的BMIFS能够选择出最优特征集,使BMIFS-LSSVM提高入侵检测准确率且降低误报率。 展开更多
关键词 网络入侵检测 互信息特征选择 最小二乘支持向量机 简化粒子群优化
在线阅读 下载PDF
通过迭代学习简化支持向量机决策函数
17
作者 刘丽涛 《计算技术与自动化》 2006年第2期117-119,共3页
支持向量机经过实践证明在小样本的情况下具有良好的泛化能力。但是在手写体数字识别的实验中,支持向量机被发现其在分类阶段的速度明显比神经网络要慢,因此在不影响支持向量机泛化能力的前提下简化支持向量机的决策函数,从而提高SVM的... 支持向量机经过实践证明在小样本的情况下具有良好的泛化能力。但是在手写体数字识别的实验中,支持向量机被发现其在分类阶段的速度明显比神经网络要慢,因此在不影响支持向量机泛化能力的前提下简化支持向量机的决策函数,从而提高SVM的分类速度是很有意义的研究。利用迭代学习的方法来简化支持向量机的决策函数,实验证明本文的方法能够极大的简化SVM的决策函数,该方法易于实施。 展开更多
关键词 支持向量机SVM 简化的支持向量机 迭代学习
在线阅读 下载PDF
改进的BT-SVM应用于电力系统SSA 被引量:4
18
作者 朱志慧 李雷 种冬梅 《计算机技术与发展》 2012年第9期157-160,165,共5页
随着电力系统的广泛发展,电力系统静态安全评估已变得越来越重要。文中比较了现在几种常用的人工智能方法,选择了支持向量机算法解决这一问题。由于解决大样本问题时,支持向量机所需训练时间显著增加,文中提出了约简样本的方法,并结合... 随着电力系统的广泛发展,电力系统静态安全评估已变得越来越重要。文中比较了现在几种常用的人工智能方法,选择了支持向量机算法解决这一问题。由于解决大样本问题时,支持向量机所需训练时间显著增加,文中提出了约简样本的方法,并结合适合于电力系统的二叉树结构,提出了一种改进的简化二叉树支持向量机算法。将这种新的支持向量机算法应用于IEEE57节点电力系统,结果表明,文中提出的算法取得了比较好的结果,有效可行。 展开更多
关键词 电力系统 静态安全评估 人工智能 二叉树支持向量机 约简样本
在线阅读 下载PDF
基于改进SPSO算法优化LS-SVM的六极径向混合磁轴承转子位移自检测技术 被引量:10
19
作者 刘甜甜 朱熀秋 《中国电机工程学报》 EI CSCD 北大核心 2020年第13期4319-4328,共10页
为解决磁轴承中采用电涡流传感器或霍尔传感器检测转子位移引起的磁轴承体积大、成本高、可靠性降低等问题,提出一种基于改进的简化粒子群算法优化最小二乘支持向量机位移预测模型的磁轴承转子位移自检测技术。介绍六极径向混合磁轴承... 为解决磁轴承中采用电涡流传感器或霍尔传感器检测转子位移引起的磁轴承体积大、成本高、可靠性降低等问题,提出一种基于改进的简化粒子群算法优化最小二乘支持向量机位移预测模型的磁轴承转子位移自检测技术。介绍六极径向混合磁轴承的结构和工作原理,并推导其径向悬浮力的数学模型;基于支持向量机回归原理,建立六极径向混合磁轴承的控制线圈电流与转子位移之间的预测模型,并利用改进的简化粒子群算法优化了最小二乘支持向量机的性能参数,实现磁轴承的转子位移自检测。构建六极径向混合磁轴承系统转子位移自检测仿真模型,并进行起浮仿真实验,仿真试验结果证明了该方法的可行性。 展开更多
关键词 六极径向混合磁轴承 最小二乘支持向量机 改进简化粒子群优化算法 自检测 预测模型
原文传递
On-line Estimation in Fed-batch Fermentation Process Using State Space Model and Unscented Kalman Filter 被引量:13
20
作者 王建林 赵利强 于涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期258-264,共7页
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta... On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process. 展开更多
关键词 on-line estimation simplified mechanistic model support vector machine particle swarm optimization unscented Kalman filter
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部