In this work,possible short-term thermal exposure oxidation in hot processing including semi-solid processing is focused.We aim to investigate the short-term oxidation behavior of a novel powder metallurgy Al_(0.8)Co_...In this work,possible short-term thermal exposure oxidation in hot processing including semi-solid processing is focused.We aim to investigate the short-term oxidation behavior of a novel powder metallurgy Al_(0.8)Co_(0.5)Cr_(1.5)CuFeNi high entropy alloy(HEA)in high-temperature solid(1000-1100℃)and semi-solid(1125-1225℃)intervals.From 1000 to 1225℃,mass gain increases from 0.31 to 0.45 mg cm^(-2)after 60 min oxidation,presenting superior oxidation resistance in the semi-solid state compared with other semi-solid alloys.Equiaxedα-Al_(2)O_(3)grains are the predominant component of oxide scales and no obvious internal oxidation layer occurs in both solid and semi-solid intervals.Al_(2)O_(3)scale growth is predominantly determined by outward Al^(3+)diffusion.For solid oxidation,different scale formation kinetics occur on various phases and the BCC(B2)phase has faster scale formation kinetics.This is attributed to outward Al^(3+)diffusion rate differences in various component systems.During semi-solid oxidation,the increased degree of chaos and number of vacancies in the liquid phase provide a diffusion channel,leading to rapid Al_(2)O_(3)formation.Oxidation resistance in the semi-solid state is attributed to dense Al_(2)O_(3)scales formed through selective oxidation of Al.展开更多
Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand p...Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care.展开更多
In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dime...In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity.展开更多
Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the...Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset.展开更多
Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties incl...Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.展开更多
Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and int...Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.展开更多
Mobile users can be recommended services or goods precisely according to their actual needs even in different contexts. Therefore, it is necessary to construct a framework integrating following functions: context iden...Mobile users can be recommended services or goods precisely according to their actual needs even in different contexts. Therefore, it is necessary to construct a framework integrating following functions: context identification,context reasoning, services or product recommendations and other tasks for the mobile terminal. In this paper, we firstly introduce mobile context awareness theory, and describe the composition of context-aware mobile systems. Secondly, we construct a framework of mobile context-aware recommendation system in line with the characteristics of mobile terminal devices and mobile context-aware data. Then, we build a nested key-value storage model and an up-to-date algorithm for mining mobile context-aware sequential pattern,in order to find both the user’s long-term behavior pattern and the new trend of his recent behavior, to predict user’s next behavior. Lastly, we discuss the difficulties and future development trend of mobile context-aware recommendation system.展开更多
基金supported by the National Natural Science Foun-dation of China(NSFC)under Grant No.52071113.
文摘In this work,possible short-term thermal exposure oxidation in hot processing including semi-solid processing is focused.We aim to investigate the short-term oxidation behavior of a novel powder metallurgy Al_(0.8)Co_(0.5)Cr_(1.5)CuFeNi high entropy alloy(HEA)in high-temperature solid(1000-1100℃)and semi-solid(1125-1225℃)intervals.From 1000 to 1225℃,mass gain increases from 0.31 to 0.45 mg cm^(-2)after 60 min oxidation,presenting superior oxidation resistance in the semi-solid state compared with other semi-solid alloys.Equiaxedα-Al_(2)O_(3)grains are the predominant component of oxide scales and no obvious internal oxidation layer occurs in both solid and semi-solid intervals.Al_(2)O_(3)scale growth is predominantly determined by outward Al^(3+)diffusion.For solid oxidation,different scale formation kinetics occur on various phases and the BCC(B2)phase has faster scale formation kinetics.This is attributed to outward Al^(3+)diffusion rate differences in various component systems.During semi-solid oxidation,the increased degree of chaos and number of vacancies in the liquid phase provide a diffusion channel,leading to rapid Al_(2)O_(3)formation.Oxidation resistance in the semi-solid state is attributed to dense Al_(2)O_(3)scales formed through selective oxidation of Al.
基金supported by the National Natural Science Foundation of China(72061006)the research on the auxiliary diagnosis system of chronic injury of levator scapulae based on the concept of digital twin(Contract No:Qian Kehe Support[2023]General 117)Research on indoor intelligent assisted walking robot for the rehabilitation of walking ability of the elderly(Contract No:Qian kehe Support[2023]General 124).
文摘Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care.
基金the National Natural Science Foundation of China(No.61772417,61634004,61602377)Key R&D Program Projects in Shaanxi Province(No.2017GY-060)Shaanxi Natural Science Basic Research Project(No.2018JM4018).
文摘In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity.
基金Supported by the Shaanxi Province Key Research and Development Project (No. 2021GY-280)Shaanxi Province Natural Science Basic Research Program (No. 2021JM-459)the National Natural Science Foundation of China (No. 61772417)
文摘Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset.
文摘Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.
文摘Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.
文摘Mobile users can be recommended services or goods precisely according to their actual needs even in different contexts. Therefore, it is necessary to construct a framework integrating following functions: context identification,context reasoning, services or product recommendations and other tasks for the mobile terminal. In this paper, we firstly introduce mobile context awareness theory, and describe the composition of context-aware mobile systems. Secondly, we construct a framework of mobile context-aware recommendation system in line with the characteristics of mobile terminal devices and mobile context-aware data. Then, we build a nested key-value storage model and an up-to-date algorithm for mining mobile context-aware sequential pattern,in order to find both the user’s long-term behavior pattern and the new trend of his recent behavior, to predict user’s next behavior. Lastly, we discuss the difficulties and future development trend of mobile context-aware recommendation system.