Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations f...Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations for the bulk and the boundary of the cell are derived. By computer simulation, the dependence of the shift voltage on the sum of the ttexoelectric coefficients and the anchoring energy strength is obtained. As a result, a novel method to determine the sum of the flexoelectric coefficients by measuring the shift voltage is put forward.展开更多
A dual conduction paths segmented anode lateral insulated-gate bipolar transistor (DSA-LIGBT) which uses triple reduced surface field (RESURF) technology is proposed. Due to the hybrid structures of triple RESURF ...A dual conduction paths segmented anode lateral insulated-gate bipolar transistor (DSA-LIGBT) which uses triple reduced surface field (RESURF) technology is proposed. Due to the hybrid structures of triple RESURF LDMOS (T-LDMOS) and traditional LIGBT, firstly, a wide p-type anode is beneficial to the small shift voltage (VST) and low specific on-resistance (Ron,sp) when the anode voltage (VA) is larger than VST. Secondly, a wide n-type anode and triple RESURF technology are used to get a low Ron,sp when VA is less than VST. Meanwhile, it can accelerate the extraction of electrons, which brings a low turn-off time (Toff). Experimental results show that: VST is only 0.9 V, Ron,sp (Ron × Area) are 11.7 and 3.6 Ω · mm^2 when anode voltage VA equals 0.9 and 3 V, respectively, the breakdown voltage reaches to 800 V and Toff is only 450 ns.展开更多
The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by ...The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal–oxide–semiconductor(MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO_(2) interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.展开更多
In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomeno...In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomenon in p-channel metal- oxide-semiconductor (pMOS) devices with an ultrathin oxide layer. In this paper, recent progress on the investigation of the Vfb shift and the origin of the Vfb roll-off in the metal-gate/high-k pMOS stacks are reviewed. Methods that can alleviate the Vfb shift phenomenon are summarized and the future research trend is described.展开更多
Amorphous indium-gallium-zinc oxide(a-IGZO)thin films are prepared by pulsed laser deposition and fabricated into thin-film transistor(TFT)devices.In-situ x-ray photoelectron spectroscopy(XPS)illustrates that weakly b...Amorphous indium-gallium-zinc oxide(a-IGZO)thin films are prepared by pulsed laser deposition and fabricated into thin-film transistor(TFT)devices.In-situ x-ray photoelectron spectroscopy(XPS)illustrates that weakly bonded oxygen(O)atoms exist in a-IGZO thin films deposited at high O_(2) pressures,but these can be eliminated by vacuum annealing.The threshold voltage(V_(th))of the a-IGZO TFTs is shifted under positive gate bias,and the Vth shift is positively related to the deposition pressure.A temperature variation experiment in the range of 20 K-300 K demonstrates that an activation energy of 144 meV is required for the Vth shift,which is close to the activation energy required for the migration of weakly bonded O atoms in a-IGZO thin films.Accordingly,the Vth shift is attributed to the acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO_(2) interface under positive gate bias.These results provide an insight into the mechanism responsible for the Vth shift of the a-IGZO TFTs and help in the production of reliable designs.展开更多
Gd-doped HfO2 has drawn worldwide interest for its interesting features. It is considered to be a suitable material for N-type metal-oxide-semiconductor (MOS) devices due to a negative flatband voltage (Vfb) shift...Gd-doped HfO2 has drawn worldwide interest for its interesting features. It is considered to be a suitable material for N-type metal-oxide-semiconductor (MOS) devices due to a negative flatband voltage (Vfb) shift caused by the Gd doping. In this work, an anomalous positive shift was observed when Gd was doped into HfO2. The cause for such a phenomenon was systematically investigated by distinguishing the effects of different factors, such as Fermi level pinning (FLP), a dipole at the dielectric/SiO2 interface, fixed interracial charge, and bulk charge, on Vfb. It was found that the FLP and interfacial dipole could make Vfb negatively shifted, which is in agreement with the conventional dipole theory. The increase in interfacial fixed charge resulting from Gd doping plays a major role in positive Vfb shift.展开更多
Irradiation experiments on p-Ga N gate high-electron-mobility transistors(HEMTs) were conducted using neutrons at Back-streaming White Neutron(Back-n) facility at the China Spallation Neutron Source(CSNS).Two groups o...Irradiation experiments on p-Ga N gate high-electron-mobility transistors(HEMTs) were conducted using neutrons at Back-streaming White Neutron(Back-n) facility at the China Spallation Neutron Source(CSNS).Two groups of devices were float-biased,while one group was ON-biased.Post-irradiation analysis revealed that the electrical performance of the devices exhibited progressive degradation with increasing Back-n fluence,with the ON-biased group demonstrating the most pronounced deterioration.This degradation was primarily characterized by a negative shift in the threshold voltage,a significant increase in reverse gate leakage current,and a slight reduction in forward gate leakage.Further analysis of the gate leakage current and capacitance-voltage characteristics indicated an elevated concentration of two-dimensional electron gas(2DEG),attributed to donor-type defects introduced within the barrier layer by Back-n irradiation.These defects act as hole traps,converting into fixed positive charges that deepen the quantum-well conduction band,thereby enhancing the 2DEG density.Additionally,through the trap-assisted tunneling mechanism,these defects serve as tunneling centers,increasing the probability of electron tunneling and consequently elevating the reverse gate leakage current.展开更多
Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing ga...Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing gate oxide defects(ΔV_(HT)),and the generation of gate oxide defects(ΔV_(OT)).In this work,the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate(HKMG)process is thoroughly studied.The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature.The effects of the three underlying subcomponents are evaluated by using the comprehensive models.It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress.Moreover,the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted.The dependence of operating lifetime on stress bias and temperature is also discussed.It is observed that NBTI lifetime significantly decreases as the stress increases.Furthermore,the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.展开更多
基金Supported by the Natural Science Foundation of Hebei Province under Grant No. A2010000004the National Natural Science Foundation of China under Grant No. 60736042+1 种基金the Key Subject Construction Project of Hebei Province Universitythe Research Project of Hebei Education Department under Grant No. Z2011133
文摘Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations for the bulk and the boundary of the cell are derived. By computer simulation, the dependence of the shift voltage on the sum of the ttexoelectric coefficients and the anchoring energy strength is obtained. As a result, a novel method to determine the sum of the flexoelectric coefficients by measuring the shift voltage is put forward.
基金supported by the National Natural Science Foundation of China(No.61376080)
文摘A dual conduction paths segmented anode lateral insulated-gate bipolar transistor (DSA-LIGBT) which uses triple reduced surface field (RESURF) technology is proposed. Due to the hybrid structures of triple RESURF LDMOS (T-LDMOS) and traditional LIGBT, firstly, a wide p-type anode is beneficial to the small shift voltage (VST) and low specific on-resistance (Ron,sp) when the anode voltage (VA) is larger than VST. Secondly, a wide n-type anode and triple RESURF technology are used to get a low Ron,sp when VA is less than VST. Meanwhile, it can accelerate the extraction of electrons, which brings a low turn-off time (Toff). Experimental results show that: VST is only 0.9 V, Ron,sp (Ron × Area) are 11.7 and 3.6 Ω · mm^2 when anode voltage VA equals 0.9 and 3 V, respectively, the breakdown voltage reaches to 800 V and Toff is only 450 ns.
基金Project supported by the Science Challenge Project of China (Grant No.TZ2018004)the National Natural Science Foundation of China (Grant Nos.11975018 and 11775254)+1 种基金the National MCF Energy R&D Program of China (Grant No.2018YEF0308100)the outstanding member of Youth Innovation Promotion Association CAS (Grant No.Y202087)。
文摘The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal–oxide–semiconductor(MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO_(2) interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.
基金Project supported by the National Natural Science Foundation of China (Grants Nos.50802005 and 11074020)the Program for New Century Excellent Talents in University,China (Grant No.NCET-08-0029)+1 种基金the Ph.D.Program Foundation of Ministry of Education of China (Grant No.200800061055)the Hong Kong Research Grants Council General Research Funds,China (Grant No.CityU112608)
文摘In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomenon in p-channel metal- oxide-semiconductor (pMOS) devices with an ultrathin oxide layer. In this paper, recent progress on the investigation of the Vfb shift and the origin of the Vfb roll-off in the metal-gate/high-k pMOS stacks are reviewed. Methods that can alleviate the Vfb shift phenomenon are summarized and the future research trend is described.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51771144 and 62104189)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2021JC-06,2019TD-020,and 2019JLM-30)+1 种基金the China Postdoctoral Science Foundation(Grant No.2020M683483)the Fundamental scientific research business expenses of Xi'an Jiaotong University(Grant No.XZY022020017).
文摘Amorphous indium-gallium-zinc oxide(a-IGZO)thin films are prepared by pulsed laser deposition and fabricated into thin-film transistor(TFT)devices.In-situ x-ray photoelectron spectroscopy(XPS)illustrates that weakly bonded oxygen(O)atoms exist in a-IGZO thin films deposited at high O_(2) pressures,but these can be eliminated by vacuum annealing.The threshold voltage(V_(th))of the a-IGZO TFTs is shifted under positive gate bias,and the Vth shift is positively related to the deposition pressure.A temperature variation experiment in the range of 20 K-300 K demonstrates that an activation energy of 144 meV is required for the Vth shift,which is close to the activation energy required for the migration of weakly bonded O atoms in a-IGZO thin films.Accordingly,the Vth shift is attributed to the acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO_(2) interface under positive gate bias.These results provide an insight into the mechanism responsible for the Vth shift of the a-IGZO TFTs and help in the production of reliable designs.
基金Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2009ZX02035)the National Natural Science of China(Grant Nos.61176091 and 50932001)
文摘Gd-doped HfO2 has drawn worldwide interest for its interesting features. It is considered to be a suitable material for N-type metal-oxide-semiconductor (MOS) devices due to a negative flatband voltage (Vfb) shift caused by the Gd doping. In this work, an anomalous positive shift was observed when Gd was doped into HfO2. The cause for such a phenomenon was systematically investigated by distinguishing the effects of different factors, such as Fermi level pinning (FLP), a dipole at the dielectric/SiO2 interface, fixed interracial charge, and bulk charge, on Vfb. It was found that the FLP and interfacial dipole could make Vfb negatively shifted, which is in agreement with the conventional dipole theory. The increase in interfacial fixed charge resulting from Gd doping plays a major role in positive Vfb shift.
基金supported by the National Natural Science Foundation of China (Grant Nos.12120101005,U2030104,12175174,11975174,and 12105229)State Key Laboratory Foundation of Laser Interaction with Matter (Grant Nos.SKLLIM1807 and SKLLIM2106)+1 种基金the Postdoctoral Fellowship Program of CPSF (Grant No.GZC20241372)National Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No.NKLIPR2419)。
文摘Irradiation experiments on p-Ga N gate high-electron-mobility transistors(HEMTs) were conducted using neutrons at Back-streaming White Neutron(Back-n) facility at the China Spallation Neutron Source(CSNS).Two groups of devices were float-biased,while one group was ON-biased.Post-irradiation analysis revealed that the electrical performance of the devices exhibited progressive degradation with increasing Back-n fluence,with the ON-biased group demonstrating the most pronounced deterioration.This degradation was primarily characterized by a negative shift in the threshold voltage,a significant increase in reverse gate leakage current,and a slight reduction in forward gate leakage.Further analysis of the gate leakage current and capacitance-voltage characteristics indicated an elevated concentration of two-dimensional electron gas(2DEG),attributed to donor-type defects introduced within the barrier layer by Back-n irradiation.These defects act as hole traps,converting into fixed positive charges that deepen the quantum-well conduction band,thereby enhancing the 2DEG density.Additionally,through the trap-assisted tunneling mechanism,these defects serve as tunneling centers,increasing the probability of electron tunneling and consequently elevating the reverse gate leakage current.
文摘Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing gate oxide defects(ΔV_(HT)),and the generation of gate oxide defects(ΔV_(OT)).In this work,the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate(HKMG)process is thoroughly studied.The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature.The effects of the three underlying subcomponents are evaluated by using the comprehensive models.It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress.Moreover,the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted.The dependence of operating lifetime on stress bias and temperature is also discussed.It is observed that NBTI lifetime significantly decreases as the stress increases.Furthermore,the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.