The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by ...The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal–oxide–semiconductor(MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO_(2) interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.展开更多
Amorphous indium-gallium-zinc oxide(a-IGZO)thin films are prepared by pulsed laser deposition and fabricated into thin-film transistor(TFT)devices.In-situ x-ray photoelectron spectroscopy(XPS)illustrates that weakly b...Amorphous indium-gallium-zinc oxide(a-IGZO)thin films are prepared by pulsed laser deposition and fabricated into thin-film transistor(TFT)devices.In-situ x-ray photoelectron spectroscopy(XPS)illustrates that weakly bonded oxygen(O)atoms exist in a-IGZO thin films deposited at high O_(2) pressures,but these can be eliminated by vacuum annealing.The threshold voltage(V_(th))of the a-IGZO TFTs is shifted under positive gate bias,and the Vth shift is positively related to the deposition pressure.A temperature variation experiment in the range of 20 K-300 K demonstrates that an activation energy of 144 meV is required for the Vth shift,which is close to the activation energy required for the migration of weakly bonded O atoms in a-IGZO thin films.Accordingly,the Vth shift is attributed to the acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO_(2) interface under positive gate bias.These results provide an insight into the mechanism responsible for the Vth shift of the a-IGZO TFTs and help in the production of reliable designs.展开更多
Irradiation experiments on p-Ga N gate high-electron-mobility transistors(HEMTs) were conducted using neutrons at Back-streaming White Neutron(Back-n) facility at the China Spallation Neutron Source(CSNS).Two groups o...Irradiation experiments on p-Ga N gate high-electron-mobility transistors(HEMTs) were conducted using neutrons at Back-streaming White Neutron(Back-n) facility at the China Spallation Neutron Source(CSNS).Two groups of devices were float-biased,while one group was ON-biased.Post-irradiation analysis revealed that the electrical performance of the devices exhibited progressive degradation with increasing Back-n fluence,with the ON-biased group demonstrating the most pronounced deterioration.This degradation was primarily characterized by a negative shift in the threshold voltage,a significant increase in reverse gate leakage current,and a slight reduction in forward gate leakage.Further analysis of the gate leakage current and capacitance-voltage characteristics indicated an elevated concentration of two-dimensional electron gas(2DEG),attributed to donor-type defects introduced within the barrier layer by Back-n irradiation.These defects act as hole traps,converting into fixed positive charges that deepen the quantum-well conduction band,thereby enhancing the 2DEG density.Additionally,through the trap-assisted tunneling mechanism,these defects serve as tunneling centers,increasing the probability of electron tunneling and consequently elevating the reverse gate leakage current.展开更多
Objective To study characteristics of hearing loss after exposure to moderate noise exposure in C57BL/6J mice. Methods Male C57BL/6J mice with normal hearing at age of 5-6 weeks were chosen for this study. The mice we...Objective To study characteristics of hearing loss after exposure to moderate noise exposure in C57BL/6J mice. Methods Male C57BL/6J mice with normal hearing at age of 5-6 weeks were chosen for this study. The mice were randomly sclccted to be studied immediately after exposure (Group P0), or 1 day (Group P1), 3 days (Group P3), 7 day (Group P7) or 14 days (P14) after exposure. Their before exposure condition served as the normal control. All mice were exposed to a broad-band white noise at 100 dB SPL for 2 hours, ABR thresholds were used to estimate hearing status at each time point. Results ABR threshold elevation was seen at every tested frequency at P0 (P〈0.01). Elevation at high-frequencies (16 kHz and 32 kHz) was greater than at lower frequencies (4 kHz and 8 kHz, P〈0.05). From P1 to P14, ABR thresholds continuously improved, and there was no significant difference between P14 and before exposure (P〉0.05). Conclusion There is a frequency specific re- sponse to 100 dB SPL broad-band white noise in C57BL/6J mice, with the high-frequency being more susceptible. Hearing loss induced by moderate noise exposure appears reversible in C57BL/6J mice.展开更多
Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PT...Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.However,whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear.In this study,we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours.We found that PTEN expression was increased in the organ of Corti,including outer hair cells,inner hair cells,and lateral wall tissues.Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons.In addition,noise exposure decreased p-PI3K and p-Akt levels.Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt.Bisperoxovanadium also prevented H_(2)O_(2)-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants.These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.展开更多
According to the vibration characteristics of the organ of Corti (OC), seven hypotheses are made to simplify the structure of the model, and a mechanical OC model is established. Using the variational principle, a d...According to the vibration characteristics of the organ of Corti (OC), seven hypotheses are made to simplify the structure of the model, and a mechanical OC model is established. Using the variational principle, a displacement analytical expression is solved under a certain pressure. The results are in good agreement with experimental data, showing the validity of the formula. Combined with the damage caused by noise in clinic, it is found that the hardening of outer hair cells and outer stereocilia can lead to loss of hearing and generation of threshold shift. In addition, the results show that high frequency resonance occurs at the bottom of the basilar membrane (BM), and low frequency resonance occurs at the top of the BM. This confirms the frequency selective characteristics of the BM. Further, using this formula can avoid interference of the envi- ronment and the technical level of the test personnel, and can evaluate performance of the OC objectively.展开更多
Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing ga...Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing gate oxide defects(ΔV_(HT)),and the generation of gate oxide defects(ΔV_(OT)).In this work,the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate(HKMG)process is thoroughly studied.The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature.The effects of the three underlying subcomponents are evaluated by using the comprehensive models.It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress.Moreover,the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted.The dependence of operating lifetime on stress bias and temperature is also discussed.It is observed that NBTI lifetime significantly decreases as the stress increases.Furthermore,the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.展开更多
Using an audiometer, the effect of the noise level upon temporary threshold shift (TTS) for five trained normal subjects (left ear only) was studied. The measurements were carried out after 6 min exposure (in third oc...Using an audiometer, the effect of the noise level upon temporary threshold shift (TTS) for five trained normal subjects (left ear only) was studied. The measurements were carried out after 6 min exposure (in third octave band) for different sound pressure levels ranging between 75-105 dB at three test frequencies 2,3, and 4 kHz. The results indicated that at exposure to noise of sound pressure level (SPL) above 85 dB, TTS increases linearly with ths SPL for all the test frequencies. The work had extended to study the recovery curves for the same ears. The results indicated that the reduction in TTS on doubling the recovery times, for the two sound pressure levels 95 dB and 105 dB, occurs at a rate of nearly 3 dB. The comparison of the recovery curve at 3 kHz with that calculated using Ward's general equation for recovery was made. Finally, to study the values of TTS produced by exposure to certain noise at different test frequencies, distribution curves for two recovery times were plotted representing TTS values, for an exposure noise of 1 / 3 octave band and centre frequency 2 kHz, at different test frequencies.展开更多
Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated...Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated to the temporary threshold shift (TTS) due to fiffuse-exposure.A probe tube with a miniature microphone was used for STF measurements in which successive 1/3 oct bandwidth random noise with central frequency from 0.25 kKz to 8 kHz were used. The subjects were divided into two groups, with the STF maxima at 2 kHz and 4 kHz respectively Pre- and post- exposure sweep Bekesy audiograms were recorded and the temporary thresh old shift calctilated as the difference between the two. Frequency of the maximum TTS was correlated to that of the maximum STF. The average TTS was very small or zero at frequen cies below the band noise exposure , but was noticeable even at the highest measured frequency (8 kHz) for beyond the noise band. Also individual differences in STF were found at frequencies between 2 kHz and 4 kHz展开更多
For studying the influence of smoking on temporary threshold shift (TTS), six normal subjects (3 smokers and 3 nonsmokers) were selected for carrying out this work. Nonsmokers were exposed separately for 7 min to 95 ...For studying the influence of smoking on temporary threshold shift (TTS), six normal subjects (3 smokers and 3 nonsmokers) were selected for carrying out this work. Nonsmokers were exposed separately for 7 min to 95 dB SPL in 1/3-octave band filtered noise centred at 2 kHz. Pre and post exposure thresholds (leftear) were recorded in a sound-proof booth using Bruel & Kjaer (B & K) Audiometer type 1800. For smokers, each one smoked a cigarette during the five minutes following the pre-exposure threshold measurement. All the assessments were conducted at a temperature between 22-25℃. The results indicated that smokers evidenced less TTS than did nonsmokers in the frequency range from 1 kHz to 5 kHz. At 6 kHz smokers evidenced nearly higher value. Maximum TTS was attained at frequency that was about 1/2-octave higher than that of the exposed noise. Comparison between recovery curves for smokers and nonsmokers was also made.展开更多
Cetaceans are aquatic mammals living in an environment that is more suited for hearing than vision.As such,their sensory systems largely utilize acoustic cues for navigation,communication,foraging,and predator avoidan...Cetaceans are aquatic mammals living in an environment that is more suited for hearing than vision.As such,their sensory systems largely utilize acoustic cues for navigation,communication,foraging,and predator avoidance.However,the elevation of underwater sound levels from increased human activities has adversely affected cetaceans’use of sound to perform vital life functions.To address those impacts,scientific studies have been conducted to understand the behavioral,psychoacoustical,physiological,and physical responses by cetaceans that have been exposed to anthropogenic sound.These studies range from captive experiments involving auditory thresholds and noise-induced threshold shifts,to field observations of behavioral disturbance from sound exposure,to post-mortem examinations of physical manifestations in stranded animals.Over the years,results from these studies have assisted regulatory agencies in developing a series of criteria and thresholds for cetacean conservation and management around the world.This paper provides a high-level overview of worldwide research efforts that have been dedicated to understanding the effects of underwater sound on cetaceans.The review is not intended to be exhaustive but rather to capture major efforts and significant findings in this field.In addition,the review excludes synthesis studies and modeling exercises that do not involve direct research on target species.展开更多
基金Project supported by the Science Challenge Project of China (Grant No.TZ2018004)the National Natural Science Foundation of China (Grant Nos.11975018 and 11775254)+1 种基金the National MCF Energy R&D Program of China (Grant No.2018YEF0308100)the outstanding member of Youth Innovation Promotion Association CAS (Grant No.Y202087)。
文摘The total ionizing dose(TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal–oxide–semiconductor(MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO_(2) interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51771144 and 62104189)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2021JC-06,2019TD-020,and 2019JLM-30)+1 种基金the China Postdoctoral Science Foundation(Grant No.2020M683483)the Fundamental scientific research business expenses of Xi'an Jiaotong University(Grant No.XZY022020017).
文摘Amorphous indium-gallium-zinc oxide(a-IGZO)thin films are prepared by pulsed laser deposition and fabricated into thin-film transistor(TFT)devices.In-situ x-ray photoelectron spectroscopy(XPS)illustrates that weakly bonded oxygen(O)atoms exist in a-IGZO thin films deposited at high O_(2) pressures,but these can be eliminated by vacuum annealing.The threshold voltage(V_(th))of the a-IGZO TFTs is shifted under positive gate bias,and the Vth shift is positively related to the deposition pressure.A temperature variation experiment in the range of 20 K-300 K demonstrates that an activation energy of 144 meV is required for the Vth shift,which is close to the activation energy required for the migration of weakly bonded O atoms in a-IGZO thin films.Accordingly,the Vth shift is attributed to the acceptor-like states induced by the accumulation of weakly bonded O atoms at the a-IGZO/SiO_(2) interface under positive gate bias.These results provide an insight into the mechanism responsible for the Vth shift of the a-IGZO TFTs and help in the production of reliable designs.
基金supported by the National Natural Science Foundation of China (Grant Nos.12120101005,U2030104,12175174,11975174,and 12105229)State Key Laboratory Foundation of Laser Interaction with Matter (Grant Nos.SKLLIM1807 and SKLLIM2106)+1 种基金the Postdoctoral Fellowship Program of CPSF (Grant No.GZC20241372)National Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No.NKLIPR2419)。
文摘Irradiation experiments on p-Ga N gate high-electron-mobility transistors(HEMTs) were conducted using neutrons at Back-streaming White Neutron(Back-n) facility at the China Spallation Neutron Source(CSNS).Two groups of devices were float-biased,while one group was ON-biased.Post-irradiation analysis revealed that the electrical performance of the devices exhibited progressive degradation with increasing Back-n fluence,with the ON-biased group demonstrating the most pronounced deterioration.This degradation was primarily characterized by a negative shift in the threshold voltage,a significant increase in reverse gate leakage current,and a slight reduction in forward gate leakage.Further analysis of the gate leakage current and capacitance-voltage characteristics indicated an elevated concentration of two-dimensional electron gas(2DEG),attributed to donor-type defects introduced within the barrier layer by Back-n irradiation.These defects act as hole traps,converting into fixed positive charges that deepen the quantum-well conduction band,thereby enhancing the 2DEG density.Additionally,through the trap-assisted tunneling mechanism,these defects serve as tunneling centers,increasing the probability of electron tunneling and consequently elevating the reverse gate leakage current.
基金supported by grants from the Liaoning Science and Technology Project(No.2011225017,2012225021)the National Basic Research Program of China(973 Program)(2012CB967900,2012CB967901)+2 种基金supported by the grants from the Beijing Natural Science Foundation(5122040)the China Postdoctoral Science Foundation(201003779,20100470103)the National Natural Science Foundation of China(NSFC,31040038)
文摘Objective To study characteristics of hearing loss after exposure to moderate noise exposure in C57BL/6J mice. Methods Male C57BL/6J mice with normal hearing at age of 5-6 weeks were chosen for this study. The mice were randomly sclccted to be studied immediately after exposure (Group P0), or 1 day (Group P1), 3 days (Group P3), 7 day (Group P7) or 14 days (P14) after exposure. Their before exposure condition served as the normal control. All mice were exposed to a broad-band white noise at 100 dB SPL for 2 hours, ABR thresholds were used to estimate hearing status at each time point. Results ABR threshold elevation was seen at every tested frequency at P0 (P〈0.01). Elevation at high-frequencies (16 kHz and 32 kHz) was greater than at lower frequencies (4 kHz and 8 kHz, P〈0.05). From P1 to P14, ABR thresholds continuously improved, and there was no significant difference between P14 and before exposure (P〉0.05). Conclusion There is a frequency specific re- sponse to 100 dB SPL broad-band white noise in C57BL/6J mice, with the high-frequency being more susceptible. Hearing loss induced by moderate noise exposure appears reversible in C57BL/6J mice.
基金supported by the National Natural Science Foundation of China,Nos.81670925(to FQC),81870732(to DJZ),81800918(to WL),81900933(to YLS)Department of Science and Technology Key Industry Innovation Chain Social Development Field Fund of Shaanxi Province,No.2021ZDLSF02-12(to FQC)the Natural Science Foundation of Shaanxi Province,No.2019JM-009(to JC).
文摘Studies have shown that phosphatase and tensin homolog deleted on chromosome ten(PTEN)participates in the regulation of cochlear hair cell survival.Bisperoxovanadium protects against neurodegeneration by inhibiting PTEN expression.However,whether bisperoxovanadium can protect against noise-induced hearing loss and the underlying mechanism remains unclear.In this study,we established a mouse model of noise-induced hearing loss by exposure to 105 dB sound for 2 hours.We found that PTEN expression was increased in the organ of Corti,including outer hair cells,inner hair cells,and lateral wall tissues.Intraperitoneal administration of bisperoxovanadium decreased the auditory threshold and the loss of cochlear hair cells and inner hair cell ribbons.In addition,noise exposure decreased p-PI3K and p-Akt levels.Bisperoxovanadium preconditioning or PTEN knockdown upregulated the activity of PI3K-Akt.Bisperoxovanadium also prevented H_(2)O_(2)-induced hair cell death by reducing mitochondrial reactive oxygen species generation in cochlear explants.These findings suggest that bisperoxovanadium reduces noise-induced hearing injury and reduces cochlear hair cell loss.
基金Project supported by the National Natural Science Foundation of China(Nos.11272200 and11572186)
文摘According to the vibration characteristics of the organ of Corti (OC), seven hypotheses are made to simplify the structure of the model, and a mechanical OC model is established. Using the variational principle, a displacement analytical expression is solved under a certain pressure. The results are in good agreement with experimental data, showing the validity of the formula. Combined with the damage caused by noise in clinic, it is found that the hardening of outer hair cells and outer stereocilia can lead to loss of hearing and generation of threshold shift. In addition, the results show that high frequency resonance occurs at the bottom of the basilar membrane (BM), and low frequency resonance occurs at the top of the BM. This confirms the frequency selective characteristics of the BM. Further, using this formula can avoid interference of the envi- ronment and the technical level of the test personnel, and can evaluate performance of the OC objectively.
文摘Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing gate oxide defects(ΔV_(HT)),and the generation of gate oxide defects(ΔV_(OT)).In this work,the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate(HKMG)process is thoroughly studied.The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature.The effects of the three underlying subcomponents are evaluated by using the comprehensive models.It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress.Moreover,the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted.The dependence of operating lifetime on stress bias and temperature is also discussed.It is observed that NBTI lifetime significantly decreases as the stress increases.Furthermore,the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.
文摘Using an audiometer, the effect of the noise level upon temporary threshold shift (TTS) for five trained normal subjects (left ear only) was studied. The measurements were carried out after 6 min exposure (in third octave band) for different sound pressure levels ranging between 75-105 dB at three test frequencies 2,3, and 4 kHz. The results indicated that at exposure to noise of sound pressure level (SPL) above 85 dB, TTS increases linearly with ths SPL for all the test frequencies. The work had extended to study the recovery curves for the same ears. The results indicated that the reduction in TTS on doubling the recovery times, for the two sound pressure levels 95 dB and 105 dB, occurs at a rate of nearly 3 dB. The comparison of the recovery curve at 3 kHz with that calculated using Ward's general equation for recovery was made. Finally, to study the values of TTS produced by exposure to certain noise at different test frequencies, distribution curves for two recovery times were plotted representing TTS values, for an exposure noise of 1 / 3 octave band and centre frequency 2 kHz, at different test frequencies.
文摘Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated to the temporary threshold shift (TTS) due to fiffuse-exposure.A probe tube with a miniature microphone was used for STF measurements in which successive 1/3 oct bandwidth random noise with central frequency from 0.25 kKz to 8 kHz were used. The subjects were divided into two groups, with the STF maxima at 2 kHz and 4 kHz respectively Pre- and post- exposure sweep Bekesy audiograms were recorded and the temporary thresh old shift calctilated as the difference between the two. Frequency of the maximum TTS was correlated to that of the maximum STF. The average TTS was very small or zero at frequen cies below the band noise exposure , but was noticeable even at the highest measured frequency (8 kHz) for beyond the noise band. Also individual differences in STF were found at frequencies between 2 kHz and 4 kHz
文摘For studying the influence of smoking on temporary threshold shift (TTS), six normal subjects (3 smokers and 3 nonsmokers) were selected for carrying out this work. Nonsmokers were exposed separately for 7 min to 95 dB SPL in 1/3-octave band filtered noise centred at 2 kHz. Pre and post exposure thresholds (leftear) were recorded in a sound-proof booth using Bruel & Kjaer (B & K) Audiometer type 1800. For smokers, each one smoked a cigarette during the five minutes following the pre-exposure threshold measurement. All the assessments were conducted at a temperature between 22-25℃. The results indicated that smokers evidenced less TTS than did nonsmokers in the frequency range from 1 kHz to 5 kHz. At 6 kHz smokers evidenced nearly higher value. Maximum TTS was attained at frequency that was about 1/2-octave higher than that of the exposed noise. Comparison between recovery curves for smokers and nonsmokers was also made.
文摘Cetaceans are aquatic mammals living in an environment that is more suited for hearing than vision.As such,their sensory systems largely utilize acoustic cues for navigation,communication,foraging,and predator avoidance.However,the elevation of underwater sound levels from increased human activities has adversely affected cetaceans’use of sound to perform vital life functions.To address those impacts,scientific studies have been conducted to understand the behavioral,psychoacoustical,physiological,and physical responses by cetaceans that have been exposed to anthropogenic sound.These studies range from captive experiments involving auditory thresholds and noise-induced threshold shifts,to field observations of behavioral disturbance from sound exposure,to post-mortem examinations of physical manifestations in stranded animals.Over the years,results from these studies have assisted regulatory agencies in developing a series of criteria and thresholds for cetacean conservation and management around the world.This paper provides a high-level overview of worldwide research efforts that have been dedicated to understanding the effects of underwater sound on cetaceans.The review is not intended to be exhaustive but rather to capture major efforts and significant findings in this field.In addition,the review excludes synthesis studies and modeling exercises that do not involve direct research on target species.