In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic inte...In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively.展开更多
With the discovery of the two-dimensional(2D) MXene, it shows a great application potential in the field of electromagnetic interference(EMI) shielding, but the mechanical brittleness and easy oxidation of MXene limit...With the discovery of the two-dimensional(2D) MXene, it shows a great application potential in the field of electromagnetic interference(EMI) shielding, but the mechanical brittleness and easy oxidation of MXene limit its wide application. For this reason, a double crosslinking strategy is provided to solve the above problems in a nacre-like “brick-mortar” layered MXene/cellulose nanofiber(MXene/CNF) film.Typically, the film was firstly suffered by dopamine modification, then was further reinforced by secondary Ca^(2+)bridging, so as to obtain excellent mechanical properties and antioxidative EMI shielding performance. Comparing with the single crosslinking, the double crosslinking strategy reveals a higher efficiency in improving the mechanical property. The mechanical strength and toughness of the double crosslinking MXene/CNF film can increase to 142.2 MPa and 9.48 MJ/m^(3), respectively. More importantly, while achieving good mechanical properties, the MXene composite film still holds a very stable EMI shielding performance of more than 44.6 dB when suffering from the oxidation treatment of hightemperature annealing, showing excellent anti-oxidation ability and environment tolerance. Therefore,this work provides a universal but effective double crosslinking strategy to solve the mechanical brittleness and easy oxidation of MXene-based composites, thus showing a huge potential in flexible EMI shielding applications.展开更多
With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electroni...With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electronic devices from radiation pollution.In this work,the flexible and ultrathin dopamine modified MXene@cellulose nanofiber(DM@CNF)composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach.The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film.By adjusting the layer number,the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m^(–3) with a thickness about 19μm.Interestingly that,the DM@CNF film with annealing treatment achieves significant improvement in conductivity(up to 17264 S·m^(–1))and EMI properties(SE of 41.90 dB and SSE/t of 10169 dB·cm^(2)·g–1),which still maintains relatively high mechanical properties.It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based,carbon-based and MXene-based shielding materials reported in the literature.These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.展开更多
Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials.Transition metal carbides(MXenes)with excellent conductivity have shown great pot...Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials.Transition metal carbides(MXenes)with excellent conductivity have shown great potential in electromagnetic interference(EMI)shielding materials,while the poor mechanical strength,flexibility,and structural stability greatly limit their further applications.Here,cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussellike layered MXene/Cellulose nanofiber/Sodium Alginate composite films,and nickel ions are further introduced to induce metal coordination crosslinking of alginate units.Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination,the tensile strength,Young’s modulus,and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased.After subsequent reduction by ascorbic acid,excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film,which further improved its hysteresis loss effect toward the incident electromagnetic waves.Consequently,the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness(47.17 dB)at a very low thickness of 29μm.This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.展开更多
High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polym...High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications.展开更多
The pressing demand for ultrathin and flexible shields to counter electromagnetic interference(EMI)has sparked interest in Ti_(3)C_(2)T_(x)MXene materials due to their exceptional electrical conductivity,tunable surfa...The pressing demand for ultrathin and flexible shields to counter electromagnetic interference(EMI)has sparked interest in Ti_(3)C_(2)T_(x)MXene materials due to their exceptional electrical conductivity,tunable surface chemistry,and layered structure.However,pure Ti_(3)C_(2)T_(x)MXene films often lack the mechanical properties required for practical engineering applications,and traditional reinforcement methods tend to reduce electrical conductivity.This work demonstrates an effective strategy to enhance the alignment and densely packed layered structure of Ti_(3)C_(2)T_(x)MXene films by regulating the acidity and alkalinity of Ti_(3)C_(2)T_(x)MXene aqueous solutions.This approach simultaneously improves mechanical strength and electromagnetic interference shielding effectiveness(EMI SE).Compared with original Ti_(3)C_(2)T_(x)MXene films,MXene films modified with ammonia solution(NH_(3)·H_(2)O)via OH-show a significant improvement in tensile strength(27.7±1.9 MPa).Meanwhile,MXene films treated with hydrochloric acid(HCl)via H^(+)reach an even higher tensile strength of 39±1.5 MPa.Moreover,the EMI SE values of the treated MXene films increase significantly,each reaching 66.2 and 58.4 dB.The maximum improvements in EMI SE values for the acid-and alkali-treated samples are 17.9%and 4%,respectively.In conclusion,the simultaneous enhancement of mechanical strength and EMI shielding efficacy highlights the potential of acid-and alkali-treated Ti_(3)C_(2)T_(x)MXene films for applications in ultrathin and flexible EMI shielding materials.展开更多
One-dimentional high-entropy metal carbides have attracted significant attention for their exceptional physical and chemical properties,which endow them with great potential for applications in structural and function...One-dimentional high-entropy metal carbides have attracted significant attention for their exceptional physical and chemical properties,which endow them with great potential for applications in structural and functional fields.However,there is a lack of stable preparation methods,particularly on flexible substrates.In this study,we successfully synthesized high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C(HEC)nanowires through a precursor pyrolysis method using waste cotton fabric as both a flexible substrate and a carbon source.Interestingly,the growth of the nanowires followed a catalyst-assisted vapor–liquid–solid mechanism,driven by the dissolution of metals and carbon-containing molecules originating from the polymer precursors and thermal decomposition of cotton fabric in the Fe-Ni alloy.This process involved nucleation of HEC and subsequent nanowire growth.The as-prepared HEC nanowires with diameters ranging from 0.05 to 0.1μm were randomly distributed on carbonized cotton fiber substrate without a specific orientation,forming an interconnected multiscale conductive network.Owing to the synergistic effects including electrical conduction loss,dipolar polarization loss arising from lattice distortion in HEC,and polarization loss generated by numerous heterojunctions within the material,the prepared HEC nanowires exhibit outstanding electromagnetic interference(EMI)shielding performance in the X-band(8.2–12.4 GHz).For instance,the material achieved an EMI shielding effectiveness(SE)of 57.55 dB at a thickness of 1.35 mm.This study introduces novel perspectives and scalable approaches for the preparation,formation mechanism,and functional applications of nanostructured high-entropy ceramics.展开更多
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i...Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13)Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).展开更多
基金supported by the Shanghai Science and Tech-nology Committee(No.22511102400)Prof.Zhang would like to appreciate the financial support from the Fundamental Research Funds for the Central Universities(No.2232020G-12)+1 种基金the Fund of National Engineering Research Center for Commercial Aircraft Manufacturing(No.COMAC-SFGS-2022-2376)the Textile Vi-sion Basic Research Program(No.J202105).
文摘In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively.
基金financially supported by the National Key R&D Program of China(No.2019YFA0706802)the National Natural Science Foundation of China(Nos.51903223 and 12072325)the Key Technologies R&D Program of Henan Province(No.212102210302)。
文摘With the discovery of the two-dimensional(2D) MXene, it shows a great application potential in the field of electromagnetic interference(EMI) shielding, but the mechanical brittleness and easy oxidation of MXene limit its wide application. For this reason, a double crosslinking strategy is provided to solve the above problems in a nacre-like “brick-mortar” layered MXene/cellulose nanofiber(MXene/CNF) film.Typically, the film was firstly suffered by dopamine modification, then was further reinforced by secondary Ca^(2+)bridging, so as to obtain excellent mechanical properties and antioxidative EMI shielding performance. Comparing with the single crosslinking, the double crosslinking strategy reveals a higher efficiency in improving the mechanical property. The mechanical strength and toughness of the double crosslinking MXene/CNF film can increase to 142.2 MPa and 9.48 MJ/m^(3), respectively. More importantly, while achieving good mechanical properties, the MXene composite film still holds a very stable EMI shielding performance of more than 44.6 dB when suffering from the oxidation treatment of hightemperature annealing, showing excellent anti-oxidation ability and environment tolerance. Therefore,this work provides a universal but effective double crosslinking strategy to solve the mechanical brittleness and easy oxidation of MXene-based composites, thus showing a huge potential in flexible EMI shielding applications.
基金supported by the National Key Research and Development Program of China(No.2022YFB3807200)the National Natural Science Foundation of China(Nos.52201022 and 21973012)+1 种基金the Natural Science Foundation of Fujian Province(Nos.2020J01474,2021J06011,and 2020J01351)the“Qishan Scholar”Scientific Research Startup Project of Fuzhou University.
文摘With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electronic devices from radiation pollution.In this work,the flexible and ultrathin dopamine modified MXene@cellulose nanofiber(DM@CNF)composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach.The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film.By adjusting the layer number,the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m^(–3) with a thickness about 19μm.Interestingly that,the DM@CNF film with annealing treatment achieves significant improvement in conductivity(up to 17264 S·m^(–1))and EMI properties(SE of 41.90 dB and SSE/t of 10169 dB·cm^(2)·g–1),which still maintains relatively high mechanical properties.It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based,carbon-based and MXene-based shielding materials reported in the literature.These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.
基金supported by the Sichuan Science and Technology Program(Grant No.2022YFG0291)State Key Laboratory of Polymer Materials Engineering(Grant No.sklpme2022-3-20)the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University(Grant No.2020SCUNG203).
文摘Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials.Transition metal carbides(MXenes)with excellent conductivity have shown great potential in electromagnetic interference(EMI)shielding materials,while the poor mechanical strength,flexibility,and structural stability greatly limit their further applications.Here,cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussellike layered MXene/Cellulose nanofiber/Sodium Alginate composite films,and nickel ions are further introduced to induce metal coordination crosslinking of alginate units.Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination,the tensile strength,Young’s modulus,and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased.After subsequent reduction by ascorbic acid,excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film,which further improved its hysteresis loss effect toward the incident electromagnetic waves.Consequently,the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness(47.17 dB)at a very low thickness of 29μm.This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.
文摘High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications.
基金supported by the National Key R&D Program of China(No.2019YFA0706802)the National Natural Science Foundation of China(Nos.52273085 and 52303113)Key Scientific Research Projects of Colleges and Universities in Henan Province,China(No.24A430045).
文摘The pressing demand for ultrathin and flexible shields to counter electromagnetic interference(EMI)has sparked interest in Ti_(3)C_(2)T_(x)MXene materials due to their exceptional electrical conductivity,tunable surface chemistry,and layered structure.However,pure Ti_(3)C_(2)T_(x)MXene films often lack the mechanical properties required for practical engineering applications,and traditional reinforcement methods tend to reduce electrical conductivity.This work demonstrates an effective strategy to enhance the alignment and densely packed layered structure of Ti_(3)C_(2)T_(x)MXene films by regulating the acidity and alkalinity of Ti_(3)C_(2)T_(x)MXene aqueous solutions.This approach simultaneously improves mechanical strength and electromagnetic interference shielding effectiveness(EMI SE).Compared with original Ti_(3)C_(2)T_(x)MXene films,MXene films modified with ammonia solution(NH_(3)·H_(2)O)via OH-show a significant improvement in tensile strength(27.7±1.9 MPa).Meanwhile,MXene films treated with hydrochloric acid(HCl)via H^(+)reach an even higher tensile strength of 39±1.5 MPa.Moreover,the EMI SE values of the treated MXene films increase significantly,each reaching 66.2 and 58.4 dB.The maximum improvements in EMI SE values for the acid-and alkali-treated samples are 17.9%and 4%,respectively.In conclusion,the simultaneous enhancement of mechanical strength and EMI shielding efficacy highlights the potential of acid-and alkali-treated Ti_(3)C_(2)T_(x)MXene films for applications in ultrathin and flexible EMI shielding materials.
基金supported by the National Natural Science Foundation of China(Nos.52202047,524B2015,52293370,52293371)China Postdoctoral Science Foundation(No.2023T160530)Joint Fund for Science and Technology Research of Henan Province and Henan Academy of Sciences(No.235200810094).
文摘One-dimentional high-entropy metal carbides have attracted significant attention for their exceptional physical and chemical properties,which endow them with great potential for applications in structural and functional fields.However,there is a lack of stable preparation methods,particularly on flexible substrates.In this study,we successfully synthesized high-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C(HEC)nanowires through a precursor pyrolysis method using waste cotton fabric as both a flexible substrate and a carbon source.Interestingly,the growth of the nanowires followed a catalyst-assisted vapor–liquid–solid mechanism,driven by the dissolution of metals and carbon-containing molecules originating from the polymer precursors and thermal decomposition of cotton fabric in the Fe-Ni alloy.This process involved nucleation of HEC and subsequent nanowire growth.The as-prepared HEC nanowires with diameters ranging from 0.05 to 0.1μm were randomly distributed on carbonized cotton fiber substrate without a specific orientation,forming an interconnected multiscale conductive network.Owing to the synergistic effects including electrical conduction loss,dipolar polarization loss arising from lattice distortion in HEC,and polarization loss generated by numerous heterojunctions within the material,the prepared HEC nanowires exhibit outstanding electromagnetic interference(EMI)shielding performance in the X-band(8.2–12.4 GHz).For instance,the material achieved an EMI shielding effectiveness(SE)of 57.55 dB at a thickness of 1.35 mm.This study introduces novel perspectives and scalable approaches for the preparation,formation mechanism,and functional applications of nanostructured high-entropy ceramics.
基金The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120093)Foundation of National Natural Science Foundation of China(Nos.U21A2093 and 51973173)Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials).
文摘Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13)Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).