As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai...As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.展开更多
This study examines the coupling analysis between box roll motion response and free surface oscillation in a narrow gap,utilizing a two-box system comprising a small roll box and a large fixed box.The potential flow m...This study examines the coupling analysis between box roll motion response and free surface oscillation in a narrow gap,utilizing a two-box system comprising a small roll box and a large fixed box.The potential flow model reveals a two-peak variation in both roll motion response and free surface oscillation across incident wave frequencies.Free decay tests indicate that these frequencies correspond to the first and second resonant frequencies of the roll-fixed two-box system.Viscous fluid flow model simulations demonstrate a two-peak behavior in roll motion response,while free surface oscillation exhibits a single peak near the second resonant frequency.Repositioning the small roll box from upstream to downstream results in increased roll motion amplitude around the first resonant frequency.The roll-box with round edge profiles exhibits beating behavior in motion response,resulting in increased roll motion amplitude across a broad frequency range.Notably,wave energy at the first resonant frequency component remains undamped by round edge profiles.展开更多
Achieving the spin-exchange relaxation-free(SERF)state in atomic comagnetometers(ACMs)necessitates a stable and weak magnetic environment.This paper presents the design of a miniaturized permalloy magnetic shielding s...Achieving the spin-exchange relaxation-free(SERF)state in atomic comagnetometers(ACMs)necessitates a stable and weak magnetic environment.This paper presents the design of a miniaturized permalloy magnetic shielding spherical shell(MSSS)with minimal apertures,tailored to meet these requirements.By employing a combination of analytical solutions and finite element analysis(FEA),we achieved superior magnetic shielding while maintaining a compact form factor.The analytical solution for the shielding factor indicated that a four-layer permalloy sphere shell with optimized air gaps was necessary.A numerical analysis model of the MSSS was developed and validated using COMSOL software,confirming the suitability of the air gaps.The size,shape,and orientation of the openings in the perforated sphere shell were meticulously designed and optimized to minimize residual magnetism.The optimal structure was fabricated,resulting in triaxial shielding factors of 47619,52631,and 21739,meeting the anticipated requirements.A comparison of simulation results with experimental tests demonstrated the efficacy of the design methodology.This study has significant implications for ultrasensitive magnetic field detection devices requiring weak magnetic field environments,such as atomic gyroscopes,magnetometers,atomic interferometers,and atomic clocks.展开更多
Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network ana...Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB.展开更多
Achieving excellent electromagnetic interference(EMI)shielding effectiveness(SE)in high rare earth(RE)-content Mg alloys is currently a significant technical challenge.This work systematically investigated the effects...Achieving excellent electromagnetic interference(EMI)shielding effectiveness(SE)in high rare earth(RE)-content Mg alloys is currently a significant technical challenge.This work systematically investigated the effects of different Nd elements on the electrical conductivity and EMI SE of Mg-12Gd-3Y-xNd alloy by adding Nd elements to the high RE content Mg-12Gd-3Y alloy,followed by a combined process of hot rolling and aging(R-A).The results indicate that the addition of Nd elements leads to reduced solid solubility of Gd and Y,resulting in a large amount of precipitation.The Mg-12Gd-3Y-2.0Nd alloy has the optimum EMI SE after 63%R-A treatment,reaching 88-118 dB at 30-1500 MHz.The Mg-12Gd-3Y-xNd alloy has acicular and granular forms of the Mg5(Gd,Y,Nd)(abbreviated as Mg5RE)phase after R-A treatment.The granular Mg5RE phase gradually breaks up and refines into more minor scales with increasing rolling reduction and is diffusely distributed in the matrix.The acicular Mg5RE phase is densely arranged,with cross-distribution in some areas.The cross-distributed acicular Mg5RE phase,the delicate granular Mg5RE phase,and the denseβ′phase provide more interfaces for reflecting electromagnetic waves and increase the multiple reflection loss of incident electromagnetic waves.In addition,the Mg-12Gd-3Y-xNd alloy deflects most of the c-axis of the grains parallel to the normal direction(ND)as the rolling reduction increases,making the impedance difference between the plate surface and air larger.The increased impedance makes the material reflect more loss to incident electromagnetic waves.The combined use of these two leads to an excellent EMI SE of Mg-12Gd-3Y-xNd with high RE content after R-A treatment.展开更多
Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex...Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interracial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.展开更多
Three-dimensional(3D) graphene/SiBCN composites(GF/SiBCN) were prepared by depositing SiBCN ceramics in 3D graphene foam via the chemical vapor infiltration technique. The effect of the heat treatment temperature on t...Three-dimensional(3D) graphene/SiBCN composites(GF/SiBCN) were prepared by depositing SiBCN ceramics in 3D graphene foam via the chemical vapor infiltration technique. The effect of the heat treatment temperature on the microstructure, phase composition, and electromagnetic properties of the GF/SiBCN composite was investigated. The SiBCN ceramics maintained an amorphous structure in the composite below 1400℃ above which the crystallinity of the free carbon phase gradually increased.While the Si3N4 and B4C phases started to crystallize at 1500℃ and their crystallinity increased with temperature, SiC was observed at 1700℃. The electromagnetic shielding effectiveness of GF/SiBCN increased with the heat treatment temperature.展开更多
The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on...The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on special instrument made by ourselves. The results of test show that the fabric with different inlaid distances of metal fibres and the testing angle between electric field plane and parallel metal fibres of have obvious effect on the shielding effectiveness of electromagnetic wave.展开更多
In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory ...In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.展开更多
Shielding effect and emission criterion of a screw dislocation near an interracial crisscross crack are dealt within this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for com...Shielding effect and emission criterion of a screw dislocation near an interracial crisscross crack are dealt within this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentialsand stress fields due to a screw dislocation located near the interracial crisscross crack. The stress intensity factor onthe crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of theorientation of the dislocation and the morphology of the crisscross crack as well as the material elastic dissimilarity onthe shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations canreduce the stress intensity factor of the interracial crisscross crack tip (shielding effect). The shielding effect increases withthe increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuthangle and the distance between the dislocation and the crack tip. The critical loads at infinity for dislocation emissionincreases with the increase of emission angle and the vertical length of the crisscross crack, and the most probable anglefor screw dislocation emission is zero. The present solutions contain previous results as special cases.展开更多
The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to m...The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to model the water resisting pipe-phalanx within the jacket. The shielding factor for ice force corresponding to different conditions are given in this paper. The research indicates that there are many factors, including the longitudinal and lateral spacing between the front and back pile-row, ice attacking angle and the ratio of pile diameter to ice thickness, that influence the shielding effect on ice force.展开更多
The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks. Utilizing the complex functio...The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks. Utilizing the complex function method, the closed-form solutions of the stress fields in the matrix and the inclusion region are derived. The stress intensity factor, the image force, as well as the critical loads for dislocation emission are discussed in detail. The results show that the nano inclusion not only enhances the shielding effect exerted by the dislocation, but also provides a shielding effect itself. Moreover, dislocations may be trapped in the nano inclusion even if the matrix is softer than the inclusion. This helps the dislocation shield crack, and reduces the dislocation density within the matrix.展开更多
The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to att...The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.展开更多
Two tigogenyl glycosides containing N-acetylglucosamine were synthesized. Their structures were confirmed by ^1H and ^13C NMR spectra. The shielding effect caused by benzoyl groups was elucidated by ^1H NMR, COSY, HSQ...Two tigogenyl glycosides containing N-acetylglucosamine were synthesized. Their structures were confirmed by ^1H and ^13C NMR spectra. The shielding effect caused by benzoyl groups was elucidated by ^1H NMR, COSY, HSQC, HMBC spectroscopy.展开更多
Magnetic shielding is very important in the design of a high-power dc comparator. This paper addressed the application of magnetic circuit method to calculate the magnetic shielding effectiveness of high-power dc comp...Magnetic shielding is very important in the design of a high-power dc comparator. This paper addressed the application of magnetic circuit method to calculate the magnetic shielding effectiveness of high-power dc comparators when an external radial magnetic field is added. The mathematical relationship between the magnetic shielding effectiveness and the parameters of the magnetic shielding body were obtained. To verify the validity of the calculation method, we developped a procedure to measure the magnetic shielding effectiveness of the magnetic body by measuring the induction voltage of the detection winding instead of the magnetic intensity at a point in the magnetic shielding body, making the manipulation much easier. The result calculated with the magnetic circuit method turns out to be closer to the measured one compared with that calculated with a conventional algorithm proposed by Ren, suggesting that the magnetic circuit method is an applicable tool for estimating the toroidal cavity magnetic shielding effectiveness of a heavy current comparator when a radial magnetic field is added.展开更多
There are magnetic interference problems in the applications of DC current comparator. Analysis on the magnetic effectiveness which is applied by the external magnetic field is introduced in this paper. The effectiven...There are magnetic interference problems in the applications of DC current comparator. Analysis on the magnetic effectiveness which is applied by the external magnetic field is introduced in this paper. The effectiveness is proved by the actual results which are compared with the magnetic- circuit method and the finite element method. In addition, the reference comment is given which can be used in the practical work of DC current comparator shield design.展开更多
The paper presents the synthesis and characterization of carbon black/silicone dioxide hybrid fillers obtained by an impregnation technology. The electromagnetic interference shielding effectiveness of the composites ...The paper presents the synthesis and characterization of carbon black/silicone dioxide hybrid fillers obtained by an impregnation technology. The electromagnetic interference shielding effectiveness of the composites filled with carbon black/silicone dioxide hybrid fillers was measured in wide frequency range of 1 - 12 GHz. The dc and ac electrical conductivity of composites also have been investigated. The relationship between electrical (dc and ac) conductivity and shielding effectiveness was analyzed. A positive correlation was found between the absorptive shielding effectiveness and ac conductivity for composites comprising conductive carbon black/silica filler, when the filler loading is above the percolation threshold.展开更多
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl amm...Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl ammonium(PDDA) was reported,used in aqueous Zn-ion batteries electrolyte for stabilizing Zn anode.The growth of zinc dendrites can be significantly restrained by benefiting from the pronounced electrostatic shielding effect from PDDA on the Zn metal surface.Moreover,the PDDA is preferentially absorbed on Zn(002) plane,thus preventing unwanted side reactions on Zn anode.Owing to the introduction of a certain amount of PDDA additive into the common ZnSO_(4)-based electrolyte,the cycle life of assembled Zn‖Zn cells(1 mA·cm^(-2) and 1 mAh·cm^(-2)) is prolonged to more than 1100 h.In response to the perforation issue of Zn electrodes caused by PDDA additives,the problem can be solved by combining foamy copper with zinc foil.For real application,Zn-ion hybrid supercapacitors and MnO_(2)‖Zn cells were assembled,which exhibited excellent cycling stability with PDDA additives.This work provides a new solution and perspective to cope with the dendrite growth problem of Zn anode.展开更多
Three-dimensional(3D) equilibrium calculations, including the plasma rotation shielding effect to resonant magnetic perturbations(RMPs) produced by the island divertor(ID) coils, were carried out using the HINT and MA...Three-dimensional(3D) equilibrium calculations, including the plasma rotation shielding effect to resonant magnetic perturbations(RMPs) produced by the island divertor(ID) coils, were carried out using the HINT and MARS-F codes on J-TEXT. Validation of 3D equilibrium calculations with experimental observations demonstrates that the shielding effect will prevent the penetration of the edge m/n = 3/1 mode component when the ID coil current is 4 k A, while change the size of magnetic islands once the current exceeds the penetration threshold. This indicates that equilibrium calculations including the plasma rotation shielding effect to RMPs can lead to better agreements with experimental observations compared to the vacuum approximation method. Additionally, the magnetic topology at the boundary undergoes changes,impacting the interaction between the plasma and the target plate. These results may be important in understanding RMP effects on edge transport and magnetohydrodynamic(MHD)instability control, as well as divertor heat and particle flux distribution control.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62101020 and 62141405)the Special Scientific Research Project of Civil Aircraft,China(No.MJZ5-2N22).
文摘As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52371267 and 52171250)。
文摘This study examines the coupling analysis between box roll motion response and free surface oscillation in a narrow gap,utilizing a two-box system comprising a small roll box and a large fixed box.The potential flow model reveals a two-peak variation in both roll motion response and free surface oscillation across incident wave frequencies.Free decay tests indicate that these frequencies correspond to the first and second resonant frequencies of the roll-fixed two-box system.Viscous fluid flow model simulations demonstrate a two-peak behavior in roll motion response,while free surface oscillation exhibits a single peak near the second resonant frequency.Repositioning the small roll box from upstream to downstream results in increased roll motion amplitude around the first resonant frequency.The roll-box with round edge profiles exhibits beating behavior in motion response,resulting in increased roll motion amplitude across a broad frequency range.Notably,wave energy at the first resonant frequency component remains undamped by round edge profiles.
基金supported by Hefei National Laboratory,Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0300500 and 2021ZD0300503).
文摘Achieving the spin-exchange relaxation-free(SERF)state in atomic comagnetometers(ACMs)necessitates a stable and weak magnetic environment.This paper presents the design of a miniaturized permalloy magnetic shielding spherical shell(MSSS)with minimal apertures,tailored to meet these requirements.By employing a combination of analytical solutions and finite element analysis(FEA),we achieved superior magnetic shielding while maintaining a compact form factor.The analytical solution for the shielding factor indicated that a four-layer permalloy sphere shell with optimized air gaps was necessary.A numerical analysis model of the MSSS was developed and validated using COMSOL software,confirming the suitability of the air gaps.The size,shape,and orientation of the openings in the perforated sphere shell were meticulously designed and optimized to minimize residual magnetism.The optimal structure was fabricated,resulting in triaxial shielding factors of 47619,52631,and 21739,meeting the anticipated requirements.A comparison of simulation results with experimental tests demonstrated the efficacy of the design methodology.This study has significant implications for ultrasensitive magnetic field detection devices requiring weak magnetic field environments,such as atomic gyroscopes,magnetometers,atomic interferometers,and atomic clocks.
基金Project supported by Anhui Province Natural Science Foundation (050440603)
文摘Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB.
基金financially supported by the National Key R&D Program of China(2021YFB3701100)the National Natural Science Foundation of China(52225101 and 52171103)the Fundamental Research Funds for the Central Universities(2020CDJDPT001).
文摘Achieving excellent electromagnetic interference(EMI)shielding effectiveness(SE)in high rare earth(RE)-content Mg alloys is currently a significant technical challenge.This work systematically investigated the effects of different Nd elements on the electrical conductivity and EMI SE of Mg-12Gd-3Y-xNd alloy by adding Nd elements to the high RE content Mg-12Gd-3Y alloy,followed by a combined process of hot rolling and aging(R-A).The results indicate that the addition of Nd elements leads to reduced solid solubility of Gd and Y,resulting in a large amount of precipitation.The Mg-12Gd-3Y-2.0Nd alloy has the optimum EMI SE after 63%R-A treatment,reaching 88-118 dB at 30-1500 MHz.The Mg-12Gd-3Y-xNd alloy has acicular and granular forms of the Mg5(Gd,Y,Nd)(abbreviated as Mg5RE)phase after R-A treatment.The granular Mg5RE phase gradually breaks up and refines into more minor scales with increasing rolling reduction and is diffusely distributed in the matrix.The acicular Mg5RE phase is densely arranged,with cross-distribution in some areas.The cross-distributed acicular Mg5RE phase,the delicate granular Mg5RE phase,and the denseβ′phase provide more interfaces for reflecting electromagnetic waves and increase the multiple reflection loss of incident electromagnetic waves.In addition,the Mg-12Gd-3Y-xNd alloy deflects most of the c-axis of the grains parallel to the normal direction(ND)as the rolling reduction increases,making the impedance difference between the plate surface and air larger.The increased impedance makes the material reflect more loss to incident electromagnetic waves.The combined use of these two leads to an excellent EMI SE of Mg-12Gd-3Y-xNd with high RE content after R-A treatment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10872065 and 50801025)
文摘Shielding effect and emission criterion of a screw dislocation near an interracial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interracial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.
基金supported by the National Key Research and Development Program of China (No. 2018YFB1106600)the Chinese National Foundation for Natural Sciences under Contracts (No. 51672217, 51572224)the Fundamental Research Funds for the Central Universities (Grant no. 3102019ghxm014)
文摘Three-dimensional(3D) graphene/SiBCN composites(GF/SiBCN) were prepared by depositing SiBCN ceramics in 3D graphene foam via the chemical vapor infiltration technique. The effect of the heat treatment temperature on the microstructure, phase composition, and electromagnetic properties of the GF/SiBCN composite was investigated. The SiBCN ceramics maintained an amorphous structure in the composite below 1400℃ above which the crystallinity of the free carbon phase gradually increased.While the Si3N4 and B4C phases started to crystallize at 1500℃ and their crystallinity increased with temperature, SiC was observed at 1700℃. The electromagnetic shielding effectiveness of GF/SiBCN increased with the heat treatment temperature.
基金This study is supported by Shaanxi Provincial Laboratory of Functional Textiles and Academy Laboratory of Xi’an University of Engineer-ing Science and Technology in Xi’an city ,P.R.Chian
文摘The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on special instrument made by ourselves. The results of test show that the fabric with different inlaid distances of metal fibres and the testing angle between electric field plane and parallel metal fibres of have obvious effect on the shielding effectiveness of electromagnetic wave.
文摘In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10872065, 50801025Hunan Provincial Innovation Foundation for Postgraduate under Grant No. CX2009B067
文摘Shielding effect and emission criterion of a screw dislocation near an interracial crisscross crack are dealt within this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentialsand stress fields due to a screw dislocation located near the interracial crisscross crack. The stress intensity factor onthe crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of theorientation of the dislocation and the morphology of the crisscross crack as well as the material elastic dissimilarity onthe shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations canreduce the stress intensity factor of the interracial crisscross crack tip (shielding effect). The shielding effect increases withthe increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuthangle and the distance between the dislocation and the crack tip. The critical loads at infinity for dislocation emissionincreases with the increase of emission angle and the vertical length of the crisscross crack, and the most probable anglefor screw dislocation emission is zero. The present solutions contain previous results as special cases.
文摘The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to model the water resisting pipe-phalanx within the jacket. The shielding factor for ice force corresponding to different conditions are given in this paper. The research indicates that there are many factors, including the longitudinal and lateral spacing between the front and back pile-row, ice attacking angle and the ratio of pile diameter to ice thickness, that influence the shielding effect on ice force.
基金Project supported by the Postdoctoral Research Funds of Jiangsu Province, China (Grant No. 1002008B)the China Postdoctoral Science Foundation (Grant No. 20110491416)
文摘The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks. Utilizing the complex function method, the closed-form solutions of the stress fields in the matrix and the inclusion region are derived. The stress intensity factor, the image force, as well as the critical loads for dislocation emission are discussed in detail. The results show that the nano inclusion not only enhances the shielding effect exerted by the dislocation, but also provides a shielding effect itself. Moreover, dislocations may be trapped in the nano inclusion even if the matrix is softer than the inclusion. This helps the dislocation shield crack, and reduces the dislocation density within the matrix.
基金Project supported in part by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB04020200)in part by the National Natural Science Foundation of China(Grant No.11204339)
文摘The aluminum shielded room has been an important part of ultra-low-field magnetic resonance imaging (ULF MRI) based on the superconducting quantum interference device (SQUID). The shielded room is effective to attenuate the external radio-frequency field and keep the extremely sensitive detector, SQUID, working properly. A high-performance shielded room can increase the signal-to-noise ratio (SNR) and improve image quality. In this study, a circular coil with a diameter of 50 cm and a square coil with a side length of 2.0 m was used to simulate the magnetic fields from the nearby electric apparatuses and the distant environmental noise sources. The shielding effectivenesses (SE) of the shielded room with different thicknesses of aluminum sheets were calculated and simulated. A room using 6-mm-thick aluminum plates with a dimension of 1.5 m x 1.5 m x 2.0 m was then constructed. The SE was experimentally measured by using three-axis SQUID magnetometers, with tranisent magnetic field induced in the aluminum plates by the strong pre-polarization pulses. The results of the measured SE agreed with that from the simulation. In addition, the introduction of a 0.5-mm gap caused the obvious reduction of SE indicating the importance of door design. The nuclear magnetic resonance (NMR) signals of water at 5.9 kHz were measured in free space and in a shielded room, and the SNR was improved from 3 to 15. The simulation and experimental results will help us design an aluminum shielded room which satisfies the requirements for future ULF human brain imaging. Finally, the cancellation technique of the transient eddy current was tried, the simulation of the cancellation technique will lead us to finding an appropriate way to suppress the eddy current fields.
基金the National Natural Science Foundation of China (No. 20372085)
文摘Two tigogenyl glycosides containing N-acetylglucosamine were synthesized. Their structures were confirmed by ^1H and ^13C NMR spectra. The shielding effect caused by benzoyl groups was elucidated by ^1H NMR, COSY, HSQC, HMBC spectroscopy.
基金Funded by the Natural Science Foundation of China under the grant number 50277018.
文摘Magnetic shielding is very important in the design of a high-power dc comparator. This paper addressed the application of magnetic circuit method to calculate the magnetic shielding effectiveness of high-power dc comparators when an external radial magnetic field is added. The mathematical relationship between the magnetic shielding effectiveness and the parameters of the magnetic shielding body were obtained. To verify the validity of the calculation method, we developped a procedure to measure the magnetic shielding effectiveness of the magnetic body by measuring the induction voltage of the detection winding instead of the magnetic intensity at a point in the magnetic shielding body, making the manipulation much easier. The result calculated with the magnetic circuit method turns out to be closer to the measured one compared with that calculated with a conventional algorithm proposed by Ren, suggesting that the magnetic circuit method is an applicable tool for estimating the toroidal cavity magnetic shielding effectiveness of a heavy current comparator when a radial magnetic field is added.
文摘There are magnetic interference problems in the applications of DC current comparator. Analysis on the magnetic effectiveness which is applied by the external magnetic field is introduced in this paper. The effectiveness is proved by the actual results which are compared with the magnetic- circuit method and the finite element method. In addition, the reference comment is given which can be used in the practical work of DC current comparator shield design.
文摘The paper presents the synthesis and characterization of carbon black/silicone dioxide hybrid fillers obtained by an impregnation technology. The electromagnetic interference shielding effectiveness of the composites filled with carbon black/silicone dioxide hybrid fillers was measured in wide frequency range of 1 - 12 GHz. The dc and ac electrical conductivity of composites also have been investigated. The relationship between electrical (dc and ac) conductivity and shielding effectiveness was analyzed. A positive correlation was found between the absorptive shielding effectiveness and ac conductivity for composites comprising conductive carbon black/silica filler, when the filler loading is above the percolation threshold.
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金financially supported by Fuzhou science and technology project (Nos.2021-ZD-213 and 2020-Z-6)Fujian Provincial Department of Science and Technology(Nos.2021T3036,2020T3004,2020T3030 and 2020H0040)+2 种基金STS Science And Technology Project of the Chinese Academy of Sciences(No.KFJ-STS-QYZD-2021-09-001)Quanzhou Science and Technology Project (No.2020G17)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (No.2021009)。
文摘Metallic zinc is an excellent anode material for Zn-ion batteries,but the growth of Zn dendrite severely hinders its practical application.Herein,an efficient and economical cationic additive,poly dimethyl diallyl ammonium(PDDA) was reported,used in aqueous Zn-ion batteries electrolyte for stabilizing Zn anode.The growth of zinc dendrites can be significantly restrained by benefiting from the pronounced electrostatic shielding effect from PDDA on the Zn metal surface.Moreover,the PDDA is preferentially absorbed on Zn(002) plane,thus preventing unwanted side reactions on Zn anode.Owing to the introduction of a certain amount of PDDA additive into the common ZnSO_(4)-based electrolyte,the cycle life of assembled Zn‖Zn cells(1 mA·cm^(-2) and 1 mAh·cm^(-2)) is prolonged to more than 1100 h.In response to the perforation issue of Zn electrodes caused by PDDA additives,the problem can be solved by combining foamy copper with zinc foil.For real application,Zn-ion hybrid supercapacitors and MnO_(2)‖Zn cells were assembled,which exhibited excellent cycling stability with PDDA additives.This work provides a new solution and perspective to cope with the dendrite growth problem of Zn anode.
基金supported by the National Magnetic Confinement Fusion Energy R & D Program of China (No. 2018 YFE0309101)National Natural Science Foundation of China (Nos. 12305243 and 51821005)。
文摘Three-dimensional(3D) equilibrium calculations, including the plasma rotation shielding effect to resonant magnetic perturbations(RMPs) produced by the island divertor(ID) coils, were carried out using the HINT and MARS-F codes on J-TEXT. Validation of 3D equilibrium calculations with experimental observations demonstrates that the shielding effect will prevent the penetration of the edge m/n = 3/1 mode component when the ID coil current is 4 k A, while change the size of magnetic islands once the current exceeds the penetration threshold. This indicates that equilibrium calculations including the plasma rotation shielding effect to RMPs can lead to better agreements with experimental observations compared to the vacuum approximation method. Additionally, the magnetic topology at the boundary undergoes changes,impacting the interaction between the plasma and the target plate. These results may be important in understanding RMP effects on edge transport and magnetohydrodynamic(MHD)instability control, as well as divertor heat and particle flux distribution control.