The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale...The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.展开更多
The investigation of absorption-led shielding mechanisms has now made practical progress as a result of the concept of green EM shielding.The extant studies primarily concentrate on the introduction of mag-netic parti...The investigation of absorption-led shielding mechanisms has now made practical progress as a result of the concept of green EM shielding.The extant studies primarily concentrate on the introduction of mag-netic particles into the system,with the objective of enhancing the absorption rate(A)through dielectric-magnetic modulation for absorption-led electromagnetic shielding.In contrast,this paper presents a novel approach whereby PVA,glycerol,and MXene are combined into an organohydrogel(PMG)with oriented pores.This results in the creation of a non-magnetic medium that exhibits high absorption loss in mul-tiple bands,thereby establishing a novel shielding system.The PMG20-3 organohydrogel(0.78 wt%MX-ene)has a shielding performance in the X-band of 42.34 dB(A/R=1).In the terahertz band,the organic hydrogel gel exhibits an absorption rate of 99.9%,a performance that exceeds that of the majority of previously reported systems.The PMG gel displays remarkable flexibility and strength,with a hysteresis return line that remains stable under 1000 compression cycles.Additionally,it offers versatile sensing capabilities and infrared stealth.The findings of this study offer novel insights that may facilitate the accelerated utilization of innovative multifunctional and environmentally conscious electromagnetic in-terference(EMI)shielding materials.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a...An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.展开更多
The development of the preparation strategy for high-quality and large-size graphene via eco-friendly routes is still a challenging issue.Herein,we have successfully developed a novel route to chemically exfoliate nat...The development of the preparation strategy for high-quality and large-size graphene via eco-friendly routes is still a challenging issue.Herein,we have successfully developed a novel route to chemically exfoliate natural graphite into high-quality and large-size graphene in a binary-peroxidant system.This system is composed of urea peroxide(CO(NH_(2))_(2)·H_(2)O_(2))and hydrogen peroxide(H_(2)O_(2)),where CO(NH_(2))_(2)·H_(2)O_(2)is used in preparing graphene for the first time.Benefiting from the complete decomposition of CO(NH_(2))_(2)·H_(2)O_(2)and H_(2)O_(2)into gaseous species under microwave(MW)irradiation,no water-washing and effluent-treatment are needed in this chemical exfoliation procedure,thus the preparation of graphene in an eco-friendly way is realized.The resultant graphene behaves a large-size,high-quality and few-layer feature with a yield of~100%.Then 4µm-thick ultrathin graphene paper fabricated from the as-exfoliated graphene is used as an electromagnetic interference(EMI)shielding material.And its absolute effectiveness of EMI shielding(SSE/t)is up to 34,176.9 dB cm^(2)/g,which is,to the best of our knowledge,among the highest values so far reported for typical EMI shielding materials.The EMI shielding performance demonstrates a great application potential of graphene paper in meeting the ever-increasingly EMI shielding demands in miniaturized electronic devices.展开更多
For the purpose of increasing the in vivo stability of polycation gene carriers, we prepared a kind of p H-sensitive poly(ethylene glycol)-poly(γ-benzyl-L-glutamate-co-glutamic acid)(PEG-PGA(65), 65 denotes th...For the purpose of increasing the in vivo stability of polycation gene carriers, we prepared a kind of p H-sensitive poly(ethylene glycol)-poly(γ-benzyl-L-glutamate-co-glutamic acid)(PEG-PGA(65), 65 denotes the molar ratio of glutamic acid in poly(γ-benzyl-L-glutamate-co-glutamic acid)). PEG-PGA(65) showed low cytotoxicity and could shield the positive charge of DNA/PEI(1:1) polyplexes efficiently. The transfection was enhanced due to the partially charge shielding in He La cell line at pH of 7.4. There was almost no transfection efficiency when the surface charge of the ternary particles turned to negative at p H of 7.4. However, the transfection efficiency recovered a lot by culturing at p H of 6.0 at the beginning of transfection. Confocal microscopic observation and flow cytometry results showed DNA/PEI polyplexes should be efficiently released and endocytosized at p H 6.0, because of the p H triggered deshielding action of PEG-PGA(65). Due to the good biocompatibility and suitable p H triggered shielding/deshielding property, PEG-PGA(65) could be a potential shielding system for polycationic gene carriers used in vivo.展开更多
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f...The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.展开更多
Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by g...Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.展开更多
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif...Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.展开更多
The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent...The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent heat treatment at 300,450,and 500°C.The material properties of the resulting samples were assessed through microstructural observation,tensile testing,electrical conductivity measurements,and electromagnetic shielding effectiveness(EMI-SE)testing.The influence of the Mg-8Li-3Y-2Zn alloy microstructure on its mechanical and electromagnetic shielding properties in different states was investigated.It was found that the as-cast alloy containsα-Mg,β-Li,Mg_(3)Zn_(3)Y_(2),and Mg_(12)ZnY phases.Following heat treatment at 500℃(HT500),the blockα-Mg phase transformedfine needle-shapes,its tensile strength increased to 263.7 MPa,and its elongation reached 45.3%.The mechanical properties of the alloy were significantly improved by the synergistic effects imparted by the needle-shapedα-Mg phase,solid solution strengthening,and precipitation strengthening.The addition of Y and Zn improved the EMI-SE of Mg-8Li-1Zn alloy,wherein the HT500 sample exhibits the highest SE,maintaining a value of 106.7–76.9 dB in the frequency range of 30–4500 MHz;this performance has rarely been reported for electromagnetically shielded alloys.This effect was mainly attributed to the multiple reflections of electromagnetic waves caused by the severe impedance mismatch of the abundant phase boundaries,which were in turn provided by the dual-phase(α/β)and secondary phases.Furthermore,the presence of nano-precipitation was also believed to enhance the absorption of electromagnetic waves.展开更多
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom...In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.展开更多
High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polym...High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications.展开更多
With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in...With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in this paper.Polyacrylamide(PAM)was synthesized by in-situ polymerization of acrylamide(AM)monomer.The obtained PAM was blended with polyethylene glycol(PEG)to prepare PAM/PEG hydrogels and form rigid support structures.Subsequently,the modified carbon nanotubes(S-CNTs)were incorpor-ated into sodium alginate(SA)and PAM/PEG.Finally,Na+was used to trigger SA self-assembly,which significantly improved the mechanical properties and electrical conductivity of the hydrogels,and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high tough-ness and strong electromagnetic interference(EMI)shielding efficiency(SE).The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa,which was 7.69%higher than that of PAM/PEG hydrogel(17.69 MPa).More en-couraging,the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt%was 32.92 dB,which is 113.21%higher than that of PAM/PEG hydrogels(15.44 dB).展开更多
Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight natur...Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials.展开更多
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal...As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai...As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.展开更多
Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(...Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(Ti_(3)C_(2)T_(x) MXene/cellulose nanofibers(CNF)-(hydroxy‑functionalized BNNS(BNNS-OH)/CNF)composite films(TBCF)with Janus structure are prepared via vacuum-assisted filtration of BNNS-OH/CNF and Ti_(3)C_(2)T_(x)/CNF suspension by one after another.Then ionic bonding-strengthened TBCF(ITBCF)is obtained by Ca^(2+)ion infiltration and cold-pressing technique.The Janus structure endows ITBCF with the unique“conductive on one side and insulating on the other”property.When the mass ratio of Ti_(3)C_(2)T_(x) and BNNS is 1:1 and the total mass fraction is 70 wt.%,the electrical conductivity(σ)of the Ti_(3)C_(2)T_(x)/CNF side of ITBCF reaches 166.7 S/cm,while the surface resistivity of the BNNS-OH/CNF side is as high as 304 MΩ.After Ca^(2+)ion infiltration,the mechanical properties of ITBCF are significantly enhanced.The tensile strength and modulus of ITBCF are 73.5 MPa and 15.6 GPa,which are increased by 75.9%and 46.2%compared with those of TBCF,respectively.Moreover,ITBCF exhibits outstanding EMI shielding effectiveness(SE)of 57 dB and thermal conductivity(λ)of 9.49 W/(m K).In addition,ITBCF also presents excellent photothermal and photoelectric energy conversion performance.Under simulated solar irradiation with a power density of 120 mW/cm^(2),the surface stabilization temperature reaches up to 65.3°C and the maximum steady state voltage reaches up to 58.2 mV.展开更多
Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication,...Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication, and portable/wearable electronic equipment.In this work, a nacre-inspired multifunctional heterocyclic aramid(HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper withlarge-scale, high strength, super toughness, and excellent tolerance tocomplex conditions is fabricated through the strategy of HA/MXenehydrogel template-assisted in-situ assembly of PPy. Benefiting from the"brick-and-mortar" layered structure and the strong hydrogen-bondinginteractions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa),outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect ofHA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly,the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dBat an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2g−1. In addition, the papers also have excellent applicationsin electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developinghigh-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.展开更多
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar...The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.展开更多
基金“High precision prestack reverse time depth migration imaging of long array seismic data in the East China Sea Shelf Basin”of the National Natural Science Foundation of China(No.42106207)“Seismic acquisition technology for deep strata under strong shielding layers in the sea and rugged seabed”of Laoshan Laboratory Science and Technology Innovation Project(No.LSKJ202203404)“Research on the compensation methods of the middledeep weak seismic reflections in the South Yellow Sea based on multi-resolution HHT time-frequency analysis”of the National Natural Science Foundation of China(No.42106208).
文摘The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.
基金the National Natural Science Foundation of China(Nos.52373073,52073091,52303083,22171086)the Shanghai Pujiang Program(No.22PJ1402500)the Fundamental Research Funds for the Central Universities(No.JKD01231701).
文摘The investigation of absorption-led shielding mechanisms has now made practical progress as a result of the concept of green EM shielding.The extant studies primarily concentrate on the introduction of mag-netic particles into the system,with the objective of enhancing the absorption rate(A)through dielectric-magnetic modulation for absorption-led electromagnetic shielding.In contrast,this paper presents a novel approach whereby PVA,glycerol,and MXene are combined into an organohydrogel(PMG)with oriented pores.This results in the creation of a non-magnetic medium that exhibits high absorption loss in mul-tiple bands,thereby establishing a novel shielding system.The PMG20-3 organohydrogel(0.78 wt%MX-ene)has a shielding performance in the X-band of 42.34 dB(A/R=1).In the terahertz band,the organic hydrogel gel exhibits an absorption rate of 99.9%,a performance that exceeds that of the majority of previously reported systems.The PMG gel displays remarkable flexibility and strength,with a hysteresis return line that remains stable under 1000 compression cycles.Additionally,it offers versatile sensing capabilities and infrared stealth.The findings of this study offer novel insights that may facilitate the accelerated utilization of innovative multifunctional and environmentally conscious electromagnetic in-terference(EMI)shielding materials.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
基金Supported by the National Basic Research Program of China(2007CB714006)the National Natural Science Foundation of China(90815023)
文摘An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.
基金supported by National Natural Science Foundation of China(No.51872253)supported by Hebei Natural Science Foundation of China(No.E2019203480).
文摘The development of the preparation strategy for high-quality and large-size graphene via eco-friendly routes is still a challenging issue.Herein,we have successfully developed a novel route to chemically exfoliate natural graphite into high-quality and large-size graphene in a binary-peroxidant system.This system is composed of urea peroxide(CO(NH_(2))_(2)·H_(2)O_(2))and hydrogen peroxide(H_(2)O_(2)),where CO(NH_(2))_(2)·H_(2)O_(2)is used in preparing graphene for the first time.Benefiting from the complete decomposition of CO(NH_(2))_(2)·H_(2)O_(2)and H_(2)O_(2)into gaseous species under microwave(MW)irradiation,no water-washing and effluent-treatment are needed in this chemical exfoliation procedure,thus the preparation of graphene in an eco-friendly way is realized.The resultant graphene behaves a large-size,high-quality and few-layer feature with a yield of~100%.Then 4µm-thick ultrathin graphene paper fabricated from the as-exfoliated graphene is used as an electromagnetic interference(EMI)shielding material.And its absolute effectiveness of EMI shielding(SSE/t)is up to 34,176.9 dB cm^(2)/g,which is,to the best of our knowledge,among the highest values so far reported for typical EMI shielding materials.The EMI shielding performance demonstrates a great application potential of graphene paper in meeting the ever-increasingly EMI shielding demands in miniaturized electronic devices.
基金financially supported by the National Natural Science Foundation of China(Nos.51203132,51222307,51303173,51390484,21474104 and 51403205)Natural Science Foundation of Guangdong Province,China(S2012040008070)Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(2012LYM_0093)
文摘For the purpose of increasing the in vivo stability of polycation gene carriers, we prepared a kind of p H-sensitive poly(ethylene glycol)-poly(γ-benzyl-L-glutamate-co-glutamic acid)(PEG-PGA(65), 65 denotes the molar ratio of glutamic acid in poly(γ-benzyl-L-glutamate-co-glutamic acid)). PEG-PGA(65) showed low cytotoxicity and could shield the positive charge of DNA/PEI(1:1) polyplexes efficiently. The transfection was enhanced due to the partially charge shielding in He La cell line at pH of 7.4. There was almost no transfection efficiency when the surface charge of the ternary particles turned to negative at p H of 7.4. However, the transfection efficiency recovered a lot by culturing at p H of 6.0 at the beginning of transfection. Confocal microscopic observation and flow cytometry results showed DNA/PEI polyplexes should be efficiently released and endocytosized at p H 6.0, because of the p H triggered deshielding action of PEG-PGA(65). Due to the good biocompatibility and suitable p H triggered shielding/deshielding property, PEG-PGA(65) could be a potential shielding system for polycationic gene carriers used in vivo.
基金This work is funded by the Magnetic Resonance Union of the Chinese Academy of Sciences(Grant No.2021gzl002)the International Partnership Program of Chinese Academy of Sciences(Grant No.182111KYSB20210014)+1 种基金the National Science Foundation of China(Grant No.52293423,Grant No.52277031)the Research and Development of Key Technologies and Equipment for Major Science and Technology Infrastructure of Development and Reform Commission of Shenzhen Municipality,China(Grant No.ZDKJ20190305002).
文摘The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.
文摘Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.
基金supported by the Natural Science Foundation of Anhui Province(No.2308085QE146 and 2208085ME116)the National Natural Science Foundation of China(No.52173039)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210894)the Anhui Provincial Universities Outstanding Youth Research Project(No.2023AH020018).
文摘Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.
基金supported by the National Natural Sci-ence Foundation of China[No.51564032]Yunnan Provin-cial Department of Education Science Research Fund Project[KKPH202132005]the Analysis and Testing Founda-tion of Kunming University of Science and Technology[2022M20212130086].
文摘The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent heat treatment at 300,450,and 500°C.The material properties of the resulting samples were assessed through microstructural observation,tensile testing,electrical conductivity measurements,and electromagnetic shielding effectiveness(EMI-SE)testing.The influence of the Mg-8Li-3Y-2Zn alloy microstructure on its mechanical and electromagnetic shielding properties in different states was investigated.It was found that the as-cast alloy containsα-Mg,β-Li,Mg_(3)Zn_(3)Y_(2),and Mg_(12)ZnY phases.Following heat treatment at 500℃(HT500),the blockα-Mg phase transformedfine needle-shapes,its tensile strength increased to 263.7 MPa,and its elongation reached 45.3%.The mechanical properties of the alloy were significantly improved by the synergistic effects imparted by the needle-shapedα-Mg phase,solid solution strengthening,and precipitation strengthening.The addition of Y and Zn improved the EMI-SE of Mg-8Li-1Zn alloy,wherein the HT500 sample exhibits the highest SE,maintaining a value of 106.7–76.9 dB in the frequency range of 30–4500 MHz;this performance has rarely been reported for electromagnetically shielded alloys.This effect was mainly attributed to the multiple reflections of electromagnetic waves caused by the severe impedance mismatch of the abundant phase boundaries,which were in turn provided by the dual-phase(α/β)and secondary phases.Furthermore,the presence of nano-precipitation was also believed to enhance the absorption of electromagnetic waves.
基金supported by the Natural Science Foundation of Shanxi Province(Nos.20210302123015 and 20210302123035)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2022-4-06)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(No.ZBKF2022030301).
文摘In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.
文摘High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications.
基金supported by the National Natural Science Foundation of China(No.52163001)the Guizhou Provincial Science and Technology Program Project Grant,China(Qiankehe Platform Talents-CXTD[2021]005,Qiankehe Platform Talents-GCC[2022]010-1,Qiankehe Fuqi[2023]001,Qiankehe Platform Talents-GCC[2023]035,and Qiankehe Platform Talents-CXTD[2023]003)+3 种基金the Guizhou Minzu University Research Platform Grant,China(No.GZMUGCZX[2021]01)the Central Guided Local Science and Technology Development Funds Project,China(Qiankehe Zhong Yindi[2023]035)the Green Chemistry and Resource Environment Innovation Team of Guizhou Higher Education Institutions,China(Guizhou Education and Technology[2022]No.13)the Doctor Startup Fund of Guizhou Minzu University,China(No.GZMUZK[2024]QD77).
文摘With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in this paper.Polyacrylamide(PAM)was synthesized by in-situ polymerization of acrylamide(AM)monomer.The obtained PAM was blended with polyethylene glycol(PEG)to prepare PAM/PEG hydrogels and form rigid support structures.Subsequently,the modified carbon nanotubes(S-CNTs)were incorpor-ated into sodium alginate(SA)and PAM/PEG.Finally,Na+was used to trigger SA self-assembly,which significantly improved the mechanical properties and electrical conductivity of the hydrogels,and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high tough-ness and strong electromagnetic interference(EMI)shielding efficiency(SE).The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa,which was 7.69%higher than that of PAM/PEG hydrogel(17.69 MPa).More en-couraging,the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt%was 32.92 dB,which is 113.21%higher than that of PAM/PEG hydrogels(15.44 dB).
基金supported by the National Natural Science Foundation of China(No.52271180)the Leading Goose R&D Program of Zhejiang Province(2022C01110).
文摘Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials.
基金supported by the Key Research and Development Program of Sichuan Province(Grant No.2023ZHCG0050)the Fundamental Research Funds for the Central Universities of China(Grant No.2682024QZ006 and 2682024ZTPY042)the Analytic and Testing Center of Southwest Jiaotong University.
文摘As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
基金supported by the National Natural Science Foundation of China(Nos.62101020 and 62141405)the Special Scientific Research Project of Civil Aircraft,China(No.MJZ5-2N22).
文摘As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.
基金financially supported by the National Natural Science Foundation of China(Nos.52303090,52403132,52403112,52473083)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0168,2024JC-TBZC-04)+6 种基金the Innovation Capability Support Plan of Shaanxi Province(No.2024ZC-KJXX-022)the Shaanxi Province Key Research and Development Plan Project(No.2023-YBGY-461)the Innovation Capability Support Program of Shaanxi(No.2024RS-CXTD-57)the Natural Science Foundation of Chongqing,China(No.2023NSCQ-MSX2547)the Youth Talent Promotion Project of Shaanxi Science and Technology Association(No.20240426)The Special Scientific Research Plan of Education Department of Shaanxi Province(No.23JK0376)the authors would also like to thank Shiyaniia lab for the sup-port of SEM and XPS tests.
文摘Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films play a pivotal role in 5 G communication technology,smart wearables,automotive electronics,and aerospace.In this work,(Ti_(3)C_(2)T_(x) MXene/cellulose nanofibers(CNF)-(hydroxy‑functionalized BNNS(BNNS-OH)/CNF)composite films(TBCF)with Janus structure are prepared via vacuum-assisted filtration of BNNS-OH/CNF and Ti_(3)C_(2)T_(x)/CNF suspension by one after another.Then ionic bonding-strengthened TBCF(ITBCF)is obtained by Ca^(2+)ion infiltration and cold-pressing technique.The Janus structure endows ITBCF with the unique“conductive on one side and insulating on the other”property.When the mass ratio of Ti_(3)C_(2)T_(x) and BNNS is 1:1 and the total mass fraction is 70 wt.%,the electrical conductivity(σ)of the Ti_(3)C_(2)T_(x)/CNF side of ITBCF reaches 166.7 S/cm,while the surface resistivity of the BNNS-OH/CNF side is as high as 304 MΩ.After Ca^(2+)ion infiltration,the mechanical properties of ITBCF are significantly enhanced.The tensile strength and modulus of ITBCF are 73.5 MPa and 15.6 GPa,which are increased by 75.9%and 46.2%compared with those of TBCF,respectively.Moreover,ITBCF exhibits outstanding EMI shielding effectiveness(SE)of 57 dB and thermal conductivity(λ)of 9.49 W/(m K).In addition,ITBCF also presents excellent photothermal and photoelectric energy conversion performance.Under simulated solar irradiation with a power density of 120 mW/cm^(2),the surface stabilization temperature reaches up to 65.3°C and the maximum steady state voltage reaches up to 58.2 mV.
基金supported by the Fundamental Research Funds for the Central Universities and Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2020E009).
文摘Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication, and portable/wearable electronic equipment.In this work, a nacre-inspired multifunctional heterocyclic aramid(HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper withlarge-scale, high strength, super toughness, and excellent tolerance tocomplex conditions is fabricated through the strategy of HA/MXenehydrogel template-assisted in-situ assembly of PPy. Benefiting from the"brick-and-mortar" layered structure and the strong hydrogen-bondinginteractions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa),outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect ofHA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly,the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dBat an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2g−1. In addition, the papers also have excellent applicationsin electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developinghigh-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.
基金supported by the Talent Fund of Beijing Jiaotong University(No,2023XKRC015)the National Natural Science Foundation of China(Nos.52172081,52073010 and 52373259).
文摘The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.