期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Damage evolution characteristics of the shear band-bedrock interface under dry-wet cycling:experimental and numerical simulation
1
作者 GUO Xueyan LOJAIN Suliman +4 位作者 LIU Xinrong LUO Xinyang ZHOU Fuchuan WANG Hao WANG Gen 《Journal of Mountain Science》 2025年第10期3869-3886,共18页
Using the“Banbiyan”dangerous rock mass(BDRM)in the Three Gorges Reservoir Area(TGRA)as a research background,this study investigates the damage evolution characteristics of shear bandbedrock interfaces under dry-wet... Using the“Banbiyan”dangerous rock mass(BDRM)in the Three Gorges Reservoir Area(TGRA)as a research background,this study investigates the damage evolution characteristics of shear bandbedrock interfaces under dry-wet cycling through a combination of dry-wet cycling tests,shear tests,and numerical simulations.The research findings are as follows:The shear band-bedrock interface's peak shear strength has a negative connection with the frequency of dry-wet cycles and a positive correlation with normal stress.With an increase in dry-wet cycles,the total deterioration of cohesion gradually rises and shows minimal change after 10 dry-wet cycles,while the average deterioration in each stage progressively decreases.The total deterioration of the internal friction angle increases,though the average deterioration in each stage remains relatively consistent.Based on the mineral composition characteristics of the limestone,a mesoscopic parameter degradation formula for the interface under dry-wet cycling was established and validated for reliability.We used this formula in numerical simulations and obtained the microscopic damage phenomena of the interface under different height-tolength ratios and different dry-wet cycles.The variation patterns of peak shear strength,crack quantity,and the total energy changes with different height-to-length ratios under dry-wet cycling were analyzed.A degradation formula for interface shear strength parameters considering different height-tolength ratios under dry-wet cycling was proposed.The results indicate that the height-to-length ratio of the interface has a more pronounced effect on strength degradation than the number of dry-wet cycles.These findings provide valuable insights for studying the overall mechanical properties of shear bands and the stability of dangerous rock masses containing shear bands under reservoir water influence. 展开更多
关键词 Three Gorges Reservoir Water-rock interaction shear band-bedrock interface Degradation pattern Dry-wet cycle
原文传递
Interface Shear Behavior Between Bio-Inspired Sidewall of a Scaled Suction Caisson and Sand Under Pull-out Load
2
作者 LI Da-yong LIANG Hao +1 位作者 ZHAO Ji-peng ZHANG Yu-kun 《China Ocean Engineering》 2025年第4期708-717,共10页
The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,th... The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects. 展开更多
关键词 scaled suction caisson interface shear test shear strength interface friction angle bio-inspired surface pull-out load
在线阅读 下载PDF
Repetitive interface frictional anisotropy mobilized by sand and snakeskin-inspired surfaces
3
作者 Muhammad Naqeeb Nawaz Tae-Young Kim Song-Hun Chong 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6691-6703,共13页
Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding... Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy. 展开更多
关键词 Snakeskin-inspired textured surfaces Modified interface direct shear(DS)tests interface friction angle Directional frictional resistance(DFR) Cranial shearing Caudal shearing
在线阅读 下载PDF
An interface shear damage model of chromium coating/steel substrate under thermal erosion load 被引量:9
4
作者 Xiao-long Li Yong Zang +3 位作者 Yong Lian Min-yu Ma Lei Mu Qin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期405-415,共11页
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e... The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel. 展开更多
关键词 Cr coating/steel substrate Thermal erosion Finite element simulation Ultimate shear strength interface shear damage model
在线阅读 下载PDF
Experimental study on the shear behavior of the interface between cushion materials and the concrete raft 被引量:1
5
作者 Li Yaokun Han Xiaolei +1 位作者 Khaled Galal Ji Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期165-178,共14页
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to q... Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P_v, material type and cushion thickness h_c were taken as variables. Conclusions include: 1) under monotonic loading, P_v is the most significant factor; the shear resistance P_(hmax) increases as P_v increases, but the normalized factor of resistance μ_n has an opposite tendency; 2) for the materials used in this study, μ_n varies from 0.40 to 0.70, the interface friction angle δ_s varies from 20° to 35°, while u_(max) varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ_n, the displacement u_1 and stiffness K_1 of the elastic stage, the displacement u_2 and stiffness K_2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K_1, K_2 and μ_n have been obtained. 展开更多
关键词 cushion/raft interface shear behavior monotonic test cyclic test "three-segment" back-bone curve
在线阅读 下载PDF
Influence of Drilling Fluid Components on Shear Strength at Cement-aquifuge Interface in Coalbed Methane Wells 被引量:1
6
作者 GU Jun WANG Shuai +2 位作者 MA Chao GAN Pin TANG Naiqian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1511-1512,共2页
The hydraulic fracturing is still an effective technology for the exploitation of coalbed methane (CBM). However, after the hydraulic fracturing operation, the high water cut or sudden water flooding of CBM well usu... The hydraulic fracturing is still an effective technology for the exploitation of coalbed methane (CBM). However, after the hydraulic fracturing operation, the high water cut or sudden water flooding of CBM well usually occurs due to upward migration of bottom water, which is called water channeling (water inrush). This problem has been severely limiting the hydraulic fracturing effect of CBM wells. Some studies show that the aquifuge and cement paste themselves will not crush under hydraulic fracturing pressure. Water channeling often occurs at cement- aquifuge interface (CAI). 展开更多
关键词 Influence of Drilling Fluid Components on shear Strength at Cement-aquifuge interface in Coalbed Methane Wells
在线阅读 下载PDF
Analysis of mode Ⅲ crack perpendicular to the interface between two dissimilar strips 被引量:2
7
作者 M.S.Matbuly 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期433-438,共6页
The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic mater... The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor. 展开更多
关键词 Composite · interface · Perpendicular crack ·Anti-plane shear stress · Fourier transform. Singular integral equation
在线阅读 下载PDF
The Solids Conveying Mechanism for Helically Grooved Single-screw Extruders 被引量:1
8
作者 潘龙 JIA Mingyin +1 位作者 薛平 JIN Zhiming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期693-700,共8页
A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section... A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data. 展开更多
关键词 solids conveying particle-size model positive conveying shear interface helical grooves
原文传递
Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method 被引量:8
9
作者 Mehdi Panji Hamid Koohsari +2 位作者 Mohammad Adampira Hamid Alielahi Jafar Asgari Marnani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期480-488,共9页
This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional be... This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces. 展开更多
关键词 Cemented paste backfill(CPB) shear tests Backfill-rock wall interface shear strength Adhesion Apparent cohesion interface friction angle
在线阅读 下载PDF
Studying the performance of fully encapsulated rock bolts with modified structural elements 被引量:2
10
作者 Jianhang Chen Hongbao Zhao +2 位作者 Fulian He Junwen Zhang Kangming Tao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期64-76,共13页
Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I... Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end. 展开更多
关键词 Fully encapsulated rock bolts Numerical simulation Structural elements shear coupling model interface shear strength
在线阅读 下载PDF
Brazed joints of CBN grains and AISI 1045 steel with AgCuTi-TiC mixed powder as filler materials 被引量:2
11
作者 Wen-feng Ding Jiu-hua Xu Zhen-zhen Chen Hong-hua Su Yu-can Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期717-724,共8页
The brazing process of cubic boron nitride (CBN) grains and AISI 1045 steel with AgCuTi-TiC mixed powder as a filler material was carried out.The joining strength and the interfacial microstructure were investigated... The brazing process of cubic boron nitride (CBN) grains and AISI 1045 steel with AgCuTi-TiC mixed powder as a filler material was carried out.The joining strength and the interfacial microstructure were investigated.The experimental results indicate that the spreading of the molten filler material on AISI 1045 steel is decreased with the increase of TiC content.A good interface is formed between the TiC particulates and AgCuTi alloy through the wetting behavior.In the case of AgCuTi+16wt% TiC,the strength of the brazed steel-to-steel joints reached the highest value of 95MPa dependent upon the reinforcement effect of TiC particles within the filler layer.Brazing resultants of TiB2,TiB,and TiN are produced at the interface of the CBN grains and the AgCuTi-TiC filler layer by virtue of the interdiffusion of B,N,and Ti atoms. 展开更多
关键词 grinding wheels cubic boron nitride brazing filler metals shear strength interfaces
在线阅读 下载PDF
锚泊线海床开槽与锚泊基础承载力研究进展综述
12
作者 芮圣洁 周文杰 +1 位作者 沈侃敏 国振 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期296-310,共15页
Mooring systems are usually adopted to position floating structures,including mooring lines and anchors,and directly determine the safety of floating structures.Seabed inspection reported that seabed trenches induced ... Mooring systems are usually adopted to position floating structures,including mooring lines and anchors,and directly determine the safety of floating structures.Seabed inspection reported that seabed trenches induced by mooring line-soil interaction appear in front of the anchor and reduce the anchor bearing capacity.This work first introduces the research progress of mooring line-soil interaction and seabed trenching simulation.Research about the suction anchor capacity in clay and sand is presented,and the seabed trench influence on anchor capacity is analyzed.For anchor analysis,this study gives a new perspective to analyze anchor installation and bearing capacity,i.e.,structure-soil interface characteristic.Some common anchor types are analyzed.Results showed that seabed trench simulation is still needed to acquire trench 3D profiles,in which the mooring line-soil dynamic interaction cannot be ignored.At present,the trench influence is not considered in suction anchor design,making the design dangerous.For the anchor,the interface shear characteristics control the most unfavorable loading conditions.Thus,accurate interface parameters should be obtained for anchor analysis. 展开更多
关键词 Seabed trench Mooring line ANCHOR Bearing capacity interface shear
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部