Deep learning algorithms have been widely used in computer vision,natural language processing and other fields.However,due to the ever-increasing scale of the deep learning model,the requirements for storage and compu...Deep learning algorithms have been widely used in computer vision,natural language processing and other fields.However,due to the ever-increasing scale of the deep learning model,the requirements for storage and computing performance are getting higher and higher,and the processors based on the von Neumann architecture have gradually exposed significant shortcomings such as consumption and long latency.In order to alleviate this problem,large-scale processing systems are shifting from a traditional computing-centric model to a data-centric model.A near-memory computing array architecture based on the shared buffer is proposed in this paper to improve system performance,which supports instructions with the characteristics of store-calculation integration,reducing the data movement between the processor and main memory.Through data reuse,the processing speed of the algorithm is further improved.The proposed architecture is verified and tested through the parallel realization of the convolutional neural network(CNN)algorithm.The experimental results show that at the frequency of 110 MHz,the calculation speed of a single convolution operation is increased by 66.64%on average compared with the CNN architecture that performs parallel calculations on field programmable gate array(FPGA).The processing speed of the whole convolution layer is improved by 8.81%compared with the reconfigurable array processor that does not support near-memory computing.展开更多
A Shared Multi-buffer Banyan Network is presented in this letter. Its control algorithm and switching fabric are simple, and it fits the high speed ATM network well. The simulation results show that the throughput of ...A Shared Multi-buffer Banyan Network is presented in this letter. Its control algorithm and switching fabric are simple, and it fits the high speed ATM network well. The simulation results show that the throughput of the proposed model is high.展开更多
基金Supported by the National Natural Science Foundation of China(No.61802304,61834005,61772417,61602377)the Shaanxi Province KeyR&D Plan(No.2021GY-029)。
文摘Deep learning algorithms have been widely used in computer vision,natural language processing and other fields.However,due to the ever-increasing scale of the deep learning model,the requirements for storage and computing performance are getting higher and higher,and the processors based on the von Neumann architecture have gradually exposed significant shortcomings such as consumption and long latency.In order to alleviate this problem,large-scale processing systems are shifting from a traditional computing-centric model to a data-centric model.A near-memory computing array architecture based on the shared buffer is proposed in this paper to improve system performance,which supports instructions with the characteristics of store-calculation integration,reducing the data movement between the processor and main memory.Through data reuse,the processing speed of the algorithm is further improved.The proposed architecture is verified and tested through the parallel realization of the convolutional neural network(CNN)algorithm.The experimental results show that at the frequency of 110 MHz,the calculation speed of a single convolution operation is increased by 66.64%on average compared with the CNN architecture that performs parallel calculations on field programmable gate array(FPGA).The processing speed of the whole convolution layer is improved by 8.81%compared with the reconfigurable array processor that does not support near-memory computing.
文摘A Shared Multi-buffer Banyan Network is presented in this letter. Its control algorithm and switching fabric are simple, and it fits the high speed ATM network well. The simulation results show that the throughput of the proposed model is high.