A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal en...A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal energy storage, while diatomite acted as the carrier matrix to provide the structural strength and prevent the leakage of PCM. It was found that KNO3 could be retained 65 wt% into pores and on surfaces of diatomite without the leakage of melted KNO3 from the SS-CPCM. The calculated filling rate of molten KNO3 that could enter into the disc-like shape pore of diatomite verified the scanning elec- tronic microscopy images of SS-CPCM. X-ray diffraction and Fourier transform infrared spectroscopy results showed that no reaction occurred between KNO3 and diatomite, performing good compatibility. Accord- ing to the differential scanning calorimetry results, after 50 thermal cycles, the phase change temperatures for melting and freezing of SS-CPCM with 65 wt% KNO3 were changed from 330.23 ℃ and 332.90 ℃ to 330.11 ℃ and 332.84 ℃ and corresponding latent heats varied from 60.52 J/g and 47.30 J/g to 54.64 J/g and 41.25 J/g, respectively. The KNO3/diatomite SS-CPCM may be considered as a potential storage media in solar power plants for thermal energy storage.展开更多
A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a ...A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2 acts as a support material to provide structural strength and prevent leakage of melted NazSO4. The microstructure and composition of the prepared composite were characterized by the N2 adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SOJSiO2 composite is a nanostructured hybrid of NazSO4 and SiO2 without new substances produced during the phase change. The macroscopic shape of the NazSO4/SiO2 composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared NazSO4/SiO2 (50%, by mass) composite are 82.3 kJ.kg i and 83.7 kJ.kg-1, and temperatures of melting and freezing are 886.0 ℃ and 880.6 ℃, respectively. Furthermore, the Na2SOJSiO2 composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.展开更多
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t...Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.展开更多
The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met...The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation.展开更多
A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic m...A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic montmorillonite (OMMT) as a support material. And the thermal properties and morphology of the SSPCM were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electronic microscope (SEM), scanning calorimeter (DSC), and differential thermal cravimetry (TG). The DSC result shows that the phase change temperature of the SSPCM is close to that of LA, and its latent heat is equivalent to that of the calculated value based on the mass ratio of LA measured by TG. The XRD, SEM and TEM results demonstrate that the LA intercalates into the silicate layers of the OMMT, thus forming a typically intercalted hybrid, which can restrict the molecular chain of the LA within the structure of OMMT at high temperature. And consequently SSPCM can keep its solid state during its solid-liquid phase change processing.展开更多
A series of fatty acid/poly methyl methacrylate(PMMA) shape-stabilized phase change materials(PCMs) have been prepared by bulk polymerization method.In the composite,fatty acid(capric acid,stearic acid,and their eutec...A series of fatty acid/poly methyl methacrylate(PMMA) shape-stabilized phase change materials(PCMs) have been prepared by bulk polymerization method.In the composite,fatty acid(capric acid,stearic acid,and their eutectic mixture) acts as core material and PMMA serves as matrix,which coats the fatty acid to prevent the leakage of melted fatty acid.The prepared shape-stabilized PCMs were characterized on the morphology,phase change behavior,chemical characterization and thermal properties.The results indicate that the composites with proper phase change temperature and latent heat are able to keep solid morphology in macro level during thermal storage process.Thermal cycling test also indicates that the composite PCMs have good thermal reliability.Moreover,thermal conductivity and thermal performance are investigated and the results show that the shape-stabilized PCMs have the higher thermal conductivity than fatty acid and exhibited good thermal performance in controlling the atmosphere temperature.展开更多
Performance enhancement of flat plate solar collectors is an endless research direction as it represents the most used solar technology.The enhancement could be achieved via design alteration,absorber-installed protru...Performance enhancement of flat plate solar collectors is an endless research direction as it represents the most used solar technology.The enhancement could be achieved via design alteration,absorber-installed protrusions,and integration with thermal energy storage.The objective of the current research is to evaluate a compacted solar collector integrated with octadecane organic paraffin PCM(phase change materials)as a thermal energy storage medium.The investigations have been performed numerically utilizing ANSYS software.Thermal storage contains the PCM securely encased behind the absorbent plate of the collector in four packing containers.The investigations have been performed without thermal energy storage and with nanoencapsulated thermal energy storage at 5%and 10%volume fractions.The optimal blend for the ongoing inquiry comprises two constituents:particulate octadecane and water as the primary fluid of operation.The findings suggest that in the morning,the nano-encapsulated PCM falls somewhere in the middle,between the absorbent copper plate’s temperature and the fluid temperature flowing out of the collector.However,the collector’s heat output is insufficient tomelt this thermal energy storagewhen its temperature drops overnight.5%by volume of nanoparticles was determined to be the ideal concentration.While increasing the volume percentage of nanoparticles inside PCM can sometimes boost the temperature of the fluid exiting,it does not necessarily improve performance.展开更多
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi...Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction.展开更多
基金supported by the Program for New Century Excellent Talents in University (Grant No. NCET-08-828)the Program for the China Geological Survey (No. 1212011120323)the Fundamental Research Funds for the Central Universities (No. 2011YXL003)
文摘A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal energy storage, while diatomite acted as the carrier matrix to provide the structural strength and prevent the leakage of PCM. It was found that KNO3 could be retained 65 wt% into pores and on surfaces of diatomite without the leakage of melted KNO3 from the SS-CPCM. The calculated filling rate of molten KNO3 that could enter into the disc-like shape pore of diatomite verified the scanning elec- tronic microscopy images of SS-CPCM. X-ray diffraction and Fourier transform infrared spectroscopy results showed that no reaction occurred between KNO3 and diatomite, performing good compatibility. Accord- ing to the differential scanning calorimetry results, after 50 thermal cycles, the phase change temperatures for melting and freezing of SS-CPCM with 65 wt% KNO3 were changed from 330.23 ℃ and 332.90 ℃ to 330.11 ℃ and 332.84 ℃ and corresponding latent heats varied from 60.52 J/g and 47.30 J/g to 54.64 J/g and 41.25 J/g, respectively. The KNO3/diatomite SS-CPCM may be considered as a potential storage media in solar power plants for thermal energy storage.
基金Supported by the National Natural Science Foundation of China(2107611)
文摘A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2 acts as a support material to provide structural strength and prevent leakage of melted NazSO4. The microstructure and composition of the prepared composite were characterized by the N2 adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SOJSiO2 composite is a nanostructured hybrid of NazSO4 and SiO2 without new substances produced during the phase change. The macroscopic shape of the NazSO4/SiO2 composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared NazSO4/SiO2 (50%, by mass) composite are 82.3 kJ.kg i and 83.7 kJ.kg-1, and temperatures of melting and freezing are 886.0 ℃ and 880.6 ℃, respectively. Furthermore, the Na2SOJSiO2 composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.
基金Funded by the National Key Technologies Research and Development Program of China(No.2006BAJ04A16)
文摘Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC.
基金Funded by National Natural Science Foundation of China(No.51308275)Natural Science Foundation of Liaoning Province(No.SY2016004)Science Foundation for Young Scientists of Liaoning Educational Committee(No.JQL201915403).
文摘The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation.
文摘针对采用单一冷却方式的锂离子电池模组LIBM(lithium-ion battery module)冷却效果不佳的问题,提出了1种相变材料PCM(phase change material)风冷耦合电池冷却系统。讨论了不同入口空气风速IAV(inlet air velocity)、不同电池间隙BG(battery gap)和不同入口空气温度IAT(inlet air temperature)对LIBM内最高温度和最大温差的影响;以IAV、BG和IAT为设计变量,以最高温度和最大温差为目标函数,通过响应面模型对设计变量与目标函数进行了数值拟合;采用非支配排序遗传算法对响应面模型进行了优化预测;利用计算流体力学仿真对优化预测结果进行了验证。结果表明,经过优化后的冷却系统能将LIBM内的最高温度降低4.68℃(13.8%),最大温差降低0.57℃(30.3%)。
文摘A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic montmorillonite (OMMT) as a support material. And the thermal properties and morphology of the SSPCM were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electronic microscope (SEM), scanning calorimeter (DSC), and differential thermal cravimetry (TG). The DSC result shows that the phase change temperature of the SSPCM is close to that of LA, and its latent heat is equivalent to that of the calculated value based on the mass ratio of LA measured by TG. The XRD, SEM and TEM results demonstrate that the LA intercalates into the silicate layers of the OMMT, thus forming a typically intercalted hybrid, which can restrict the molecular chain of the LA within the structure of OMMT at high temperature. And consequently SSPCM can keep its solid state during its solid-liquid phase change processing.
基金Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAJ04A04)Liaoning Scientific Research Program of Colleges and Universities,China (No. 2008S190)
文摘A series of fatty acid/poly methyl methacrylate(PMMA) shape-stabilized phase change materials(PCMs) have been prepared by bulk polymerization method.In the composite,fatty acid(capric acid,stearic acid,and their eutectic mixture) acts as core material and PMMA serves as matrix,which coats the fatty acid to prevent the leakage of melted fatty acid.The prepared shape-stabilized PCMs were characterized on the morphology,phase change behavior,chemical characterization and thermal properties.The results indicate that the composites with proper phase change temperature and latent heat are able to keep solid morphology in macro level during thermal storage process.Thermal cycling test also indicates that the composite PCMs have good thermal reliability.Moreover,thermal conductivity and thermal performance are investigated and the results show that the shape-stabilized PCMs have the higher thermal conductivity than fatty acid and exhibited good thermal performance in controlling the atmosphere temperature.
文摘Performance enhancement of flat plate solar collectors is an endless research direction as it represents the most used solar technology.The enhancement could be achieved via design alteration,absorber-installed protrusions,and integration with thermal energy storage.The objective of the current research is to evaluate a compacted solar collector integrated with octadecane organic paraffin PCM(phase change materials)as a thermal energy storage medium.The investigations have been performed numerically utilizing ANSYS software.Thermal storage contains the PCM securely encased behind the absorbent plate of the collector in four packing containers.The investigations have been performed without thermal energy storage and with nanoencapsulated thermal energy storage at 5%and 10%volume fractions.The optimal blend for the ongoing inquiry comprises two constituents:particulate octadecane and water as the primary fluid of operation.The findings suggest that in the morning,the nano-encapsulated PCM falls somewhere in the middle,between the absorbent copper plate’s temperature and the fluid temperature flowing out of the collector.However,the collector’s heat output is insufficient tomelt this thermal energy storagewhen its temperature drops overnight.5%by volume of nanoparticles was determined to be the ideal concentration.While increasing the volume percentage of nanoparticles inside PCM can sometimes boost the temperature of the fluid exiting,it does not necessarily improve performance.
基金supported by National Natural Science Foundation of China(Nos.51806092,52201410)Non-Carbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program,High-End Foreign Experts Recruitment Plan of China(G2022013028L).
文摘Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction.