期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Shake table testing of a multi-tower connected hybrid structure 被引量:3
1
作者 Zhou Ying Lu Xilin +1 位作者 Lu Wensheng He Zhijun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期47-59,共13页
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building w... Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building. 展开更多
关键词 complex building hybrid structure scaled model shake table testing seismic performance
在线阅读 下载PDF
Shake table tests and numerical investigations on the seismic response of transmission tower-line systems under strike-slip fault rupture
2
作者 Tian Li Yang Meng +3 位作者 Liu Juncai Dong Xu Liu Yuping Xie Quancai 《Earthquake Engineering and Engineering Vibration》 2025年第4期1049-1066,共18页
Transmission tower-line systems(TTLSs)play a crucial role in the long-distance transmission of electrical energy,often necessitating their crossing through active fault areas.However,previous studies have given limite... Transmission tower-line systems(TTLSs)play a crucial role in the long-distance transmission of electrical energy,often necessitating their crossing through active fault areas.However,previous studies have given limited attention to the seismic performance of fault-crossing transmission TTLSs,particularly in terms of considering the impact of permanent ground motion displacements(PGMDs).This study attempts to address this concern by evaluating the seismic performance of TTLSs exposed to fault earthquakes.Three strike-slip ground motions are carefully selected,and the corresponding PGMDs are accurately replicated through baseline adjustment.A meticulously designed and fabricated reduced-scale experimental model of a TTLS is then employed to investigate the influence of the fault crossing location(FCL)on its seismic performance.The shake table tests conducted unequivocally demonstrate that PGMDs significantly amplify the seismic responses of the TTLS and identify the most unfavorable FCL.Furthermore,a finite element model(FEM)is developed and its accuracy is validated by comparing it with the experimental results.Parametric analyses are conducted to explore the effects of fault crossing angles(FCAs)and PGMD amplitudes on the seismic performances of TTLSs.This study is expected to contribute valuable insights for the seismic design and performance analysis of TTLSs crossing fault areas. 展开更多
关键词 transmission tower-line system seismic performance shake table test permanent ground motion displacement fault crossing location
在线阅读 下载PDF
A novel control strategy for reproducing the floor motions of high-rise buildings by earthquake-simulating shake tables
3
作者 Yuteng Cao Zhe Qu Xiaodong Ji 《Earthquake Research Advances》 CSCD 2024年第1期67-75,共9页
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab... To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range. 展开更多
关键词 shake table test Nonstructural element High-rise building Open-loop IDCS algorithm Off-line iteration
在线阅读 下载PDF
Experimental and analytical investigations of the dynamic characteristics of a mold transformer with rotary friction dampers based on shaking table tests
4
作者 Seung-Jae Lee Ji-Eon Lee +1 位作者 Ngoc Hieu Dinh Kyoung-Kyu Choi 《Earthquake Engineering and Engineering Vibration》 2025年第2期451-472,共22页
In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral d... In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral displacement that occurred along the direction of the weak stiffness axis of the mold transformer. In addition, shaking table tests were performed by attaching friction dampers to both sides of the mold transformer. Based on the shaking table test results, the natural frequency, mode vector, and damping ratio of the mold transformer were derived using the transfer function and half-power bandwidth. The test results indicated that the use of friction dampers can decrease the displacement and acceleration response of the mold transformer. Finally, dynamic structural models were established considering the component connectivity and mass distribution of the mold transformer. In addition, a numerical strategy was proposed to calibrate the stiffness coefficients of the mold transformer, thereby facilitating the relationship between generalized mass and stiffness. The results indicated that the analytical model based on the calibration strategy of stiffness coefficients can reasonably simulate the dynamic behavior of the mold transformer using friction dampers with regard to transfer function, displacement, and acceleration response. 展开更多
关键词 mold transformer dynamic characteristics shaking table test rotary friction dampers dynamic structural model stiffness calibration
在线阅读 下载PDF
Seismic stability analysis of sandy slope with anti-slide pipe piles through shaking table tests and finite element
5
作者 SALEH ASHEGHABADI Mohsen XU Jianmin +2 位作者 JIA Yuyue LIU Junwei WANG Yulin 《Journal of Mountain Science》 2025年第10期3744-3768,共25页
Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-en... Seismic-induced landslides critically threaten infrastructure and human safety,especially in sandy slopes where conventional stabilization methods often fail under dynamic loading.This study evaluates circular open-ended anti-slide pipe piles embedded in a two-layer sandy slope with differing geotechnical properties.Ten physical models,including five freefield and five pile-reinforced slopes,were tested on a shaking table.Key seismic responses—acceleration,soil displacement,and bending moments—were monitored using accelerometers,strain gauges,and Digital Image Correlation(DIC).Complementary numerical simulations using Abaqus with a Mohr–Coulomb model validated experimental results.Soil displacement in free-field models under 0.25g shaking was about 3.5 times greater than in reinforced slopes.Bending moments increased with seismic intensity,peaking at depths around five times the pile diameter.Limitations including simplified two-layer soil representation,idealized seismic inputs,and boundary effects inherent to laboratory models restrict direct field application but enable controlled analysis.By combining physical experiments with numerical modeling,the study provides a robust and validated framework for seismic slope stabilization.This integrated approach enhances understanding of soil–pile interaction under seismic loads and offers targeted insights for developing safer and more reliable geotechnical design strategies in earthquake-prone areas. 展开更多
关键词 Anti-slide piles Shaking table tests Sloping lands Soil-pile models Free-field models
原文传递
Effects of weak interlayers on seismic performance of bedding slopes based on shaking table tests
6
作者 Hailong Yang Xiangjun Pei +2 位作者 Shenghua Cui Zhihao He Jin Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6517-6529,共13页
Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of... Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of bedding slopes,each with different weak interlayers:one with a homogeneous weak layer and another with discontinuous interfaces.Shaking table tests were conducted to compare their seismic performance.The results show that the peak ground acceleration(PGA)values above the weak interlayer in model A were significantly higher than those in model B,with the differences increasing as the input wave amplitude increased.The peak earth pressure(PEP)values at the tensile failure boundary at the rear edge of model A were also higher,whereas those within the weak layer at the toe of model A were lower than those in model B.Deformation analysis revealed that the maximum principal strain in model A initially appeared at the upper part of the tensile failure boundary,while the maximum shear strain was concentrated near the rear edge within the weak layer.In contrast,model B exhibited the opposite strain distribution.These findings provide insight into the impact of weak interlayers on the dynamic response and deformation of bedding slopes,highlighting the importance of considering this factor in seismic landslide investigations and failure mode predictions. 展开更多
关键词 Dynamic response Seismic deformation Bedding slopes Weak interlayer Shaking table test
在线阅读 下载PDF
Large-scale shaking table test on unlined tunnel in fault zone under threedimensional earthquake
7
作者 ZHANG Xiaoyu TAO Zhigang +1 位作者 YANG Xiaojie ZHANG Ruixue 《Journal of Mountain Science》 2025年第1期296-311,共16页
A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel const... A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel construction in fault-prone areas particularly vulnerable to the effects of fault activity due to the complexities of the surrounding geological environment.To investigate the dynamic response characteristics of tunnel structures under varying surrounding rock conditions,a three-dimensional large-scale shaking table physical model test was conducted.This study also aimed to explore the damage mechanisms associated with the Tabaiyi Tunnel under seismic loading.The results demonstrate that poor quality surrounding rock enhances the seismic response of the tunnel.This effect is primarily attributed to the distribution characteristics of acceleration,dynamic strain,and dynamic soil pressure.A comparison between unidirectional and multi-directional(including vertical)seismic motions reveals that vertical seismic motion has a more significant impact on specific tunnel locations.Specifically,the maximum tensile stress is observed at the arch shoulder,with values ranging from 60 to 100 k Pa.Moreover,NPR(Non-Prestressed Reinforced)anchor cables exhibit a substantial constant resistance effect under low-amplitude seismic waves.However,when the input earthquake amplitude reaches 0.8g,local sliding occurs at the arch shoulder region of the NPR anchor cable.These findings underscore the importance of focusing on seismic mitigation measures in fault zones and reinforcing critical areas,such as the arch shoulders,in practical engineering applications. 展开更多
关键词 Fault tunnel Shaking table test Dynamic response Three-directional earthquake Damage mechanism
原文传递
Rail displacement measurement in shaking table tests via a method integrating KLT feature tracker and extended Kalman filter
8
作者 WANG Huan CHEN Ruoxi +2 位作者 YE Shanshan CHEN Zeqi ZHAO Fei 《Journal of Southeast University(English Edition)》 2025年第2期207-214,共8页
Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displace... Shaking table tests are widely used to evaluate seismic effects on railway structures,but accurately measuring rail displacement remains a significant challenge owing to the nonlinear characteristics of large displacements,ambient noise interference,and limitations in displacement meter installation.In this paper,a novel method that integrates the Kanade-Lucas-Tomasi(KLT)feature tracker with an extended Kalman filter(EKF)is presented for measuring rail displacement during shaking table tests.The method employs KLT feature tracker and a random sample consensus algorithm to extract and track key feature points,while EKF optimally estimates dynamic states by accounting for system noise and observation errors.Shaking table test results demonstrate that the proposed method achieves an acceleration root mean square error of 0.300 m/s^(2)and a correlation with accelerometer data exceeding 99.7%,significantly outper-forming the original KLT approach.This innovative method provides a more efficient and reliable solution for measuring rail displacement under large nonlinear vibrations. 展开更多
关键词 shaking table test rail displacement computer vision Kanade-Lucas-Tomasi(KLT)feature tracker extended Kalman filter(EKF)
在线阅读 下载PDF
Seismic response analysis of buried pipelines with varying stiffness by shaking table tests
9
作者 Chen Hongyu Cui Jie +3 位作者 Li Yadong Ouyang Zhiyong Huang Xiangyun Shan Yi 《Earthquake Engineering and Engineering Vibration》 2025年第2期583-594,共12页
The relative stiffness between underground structures and surrounding soil may significantly influence the dynamic response of such structures.In this study,two underground pipelines were fabricated using rubber joint... The relative stiffness between underground structures and surrounding soil may significantly influence the dynamic response of such structures.In this study,two underground pipelines were fabricated using rubber joints with varying stiffness,and the corresponding dynamic response was evaluated.Model soils were prepared based on similarity ratios.Next,reduced-scale shaking table tests were conducted to investigate the impact of circular underground structures with varying stiffness joints on the amplification of ground acceleration,dynamic response,and deformation patterns of the underground pipelines.The comparative analysis showed that structures with lower stiffness exert less constraint on the surrounding soil,resulting in a higher amplification factor of ground acceleration.The seismic response of less stiff structures is generally 1.1 to 1.3 times the response of the stiffer structures.Therefore,the seismic response of the variable stiffness pipeline exhibits pronounced characteristics.Rubber joints effectively reduce the seismic response of underground structures,demonstrating favorable isolation effects.Consequently,relative stiffness plays a crucial role in the seismic design of underground structures,and the use of rubber materials in underground structures is advantageous. 展开更多
关键词 shaking table test underground pipeline variable stiffness joint pipeline seismic response
在线阅读 下载PDF
Seismic response of underground utility tunnels: shaking table testing and FEM analysis 被引量:38
10
作者 Jiang Luzhen Chen Jun Li Jie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期555-567,共13页
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic per... Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker- Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis. 展开更多
关键词 lifeline system utility tunnel shaking table test finite element method soil-structure interaction
在线阅读 下载PDF
Shake table tests of suspended ceilings to simulate the observed damage in the M_s 7.0 Lushan earthquake, China 被引量:16
11
作者 Wang Duozhi Dai Junwu +1 位作者 Qu Zhe Ning Xiaoqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第2期239-249,共11页
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely u... Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior. 展开更多
关键词 suspended ceiling Lushan earthquake Wenchuan earthquake shake table test wall closure acoustic mineral fiber panel
在线阅读 下载PDF
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground 被引量:16
12
作者 Tang Liang Ling Xianzhang +2 位作者 Xu Pengju Gao Xia Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期39-50,共12页
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a... This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun. 展开更多
关键词 liquefiable ground seismic soil-pile-structure interaction pile groups of bridge shake table test
在线阅读 下载PDF
Investigation into dynamic response of regional sites to seismic waves using shaking table testing 被引量:5
13
作者 Li Yadong Cui Jie +1 位作者 Guan Tianding Jing Liping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第3期411-421,共11页
This study addresses the changes in acceleration,pore water pressure and Fourier spectrums of different types of seismic waves with various amplitudes via large-scale shaking table tests from two sites:a sand-containi... This study addresses the changes in acceleration,pore water pressure and Fourier spectrums of different types of seismic waves with various amplitudes via large-scale shaking table tests from two sites:a sand-containing regional site and an all-clay site.Comparative analyses of the test results show that the pore water pressures in sand-soil layers of the regional site initially increase and then decrease as the amplitudes of the seismic accelerations increase.The actions of the vertical and vibrational seismic waves contribute to greater pore water pressures.The amplification coefficient of the sand-layer regional site becomes smaller as the seismic waves grow stronger,so that both sites are capable of filtering high frequencies and amplifying low frequencies of seismic waves.This is more apparent with the increase in the peak value of the acceleration,and the natural vibration frequencies of both sites decrease with the transmission of the seismic waves from the basement to the ground surface.The decreasing frequency value of the sand-containing regional site is smaller than that of the all-clay site. 展开更多
关键词 shaking table test regional site all-clay site SEI
在线阅读 下载PDF
A shake table investigation of dynamic behavior of pile supported bridges in liquefiable soil deposits 被引量:4
14
作者 Piyush Mohanty Xu Dan +1 位作者 Suryakant Biswal Subhamoy Bhattacharya 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期1-24,共24页
Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among... Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among other categories of failures,mid span collapse(without the failure of abutments)of pile supported bridges founded in liquefiable deposits are still observed even in most recent earthquakes.This mechanism of collapse is attributed to the effects related to the differential elongation of natural period of the individual piers during liquefaction.A shake table investigation has been carried out in this study to verify mechanisms behind midspan collapse of pile supported bridges in liquefiable deposits.In this investigation,a typical pile supported bridge is scaled down,and its foundations pass through the liquefiable loose sandy soil and rest in a dense gravel layer.White noise motions of increasing acceleration magnitude have been applied to initiate progressive liquefaction and to characterize the dynamic features of the bridge.It has been found that as the liquefaction of the soil sets in,the natural frequency of individual bridge support is reduced,with the highest reduction occurring near the central spans.As a result,there is differential lateral displacement and bending moment demand on the piles.It has also been observed that for the central pile,the maximum bending moment in the pile will occur at a higher elevation,as compared to that of the interface of soils of varied stiffness,unlike the abutment piles.The practical implications of this research are also highlighted. 展开更多
关键词 BRIDGES midspan failure LIQUEFACTION bridge collapse EARTHQUAKE PILE shake table test natural frequency
在线阅读 下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test 被引量:2
15
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
在线阅读 下载PDF
Evaluation of the effects of EPS composite soil replacement on the dynamic performance of caisson structure using shaking table tests 被引量:1
16
作者 Gao Hongmei Ji Zhanpeng +3 位作者 Zhang Xinlei Zhang Shushan Wang Zhihua Shen Guangming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期829-843,共15页
The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma... The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure. 展开更多
关键词 EPS composite soil foundation Caisson-type quay wall shaking table test phase difference rotation angle
在线阅读 下载PDF
Numerical analysis on seismic performance of underground structures in liquefiable interlayer sites from centrifuge shaking table test 被引量:1
17
作者 Yan Guanyu Xu Chengshun +2 位作者 Zhang Zihong Du Xiuli Wang Xuelai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期781-798,共18页
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response... When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site. 展开更多
关键词 centrifuge shaking table test underground structure liquefiable interlayer sites seismic response validation of numerical model
在线阅读 下载PDF
Influence of isolated footing embedment on the seismic performance of building considering the soil-foundation-structure interaction:An experimental approach
18
作者 Vaibhav Mittal Manojit Samanta D.P.Kanungo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1194-1212,共19页
The present study investigates the influence of embedment depth of isolated footing supporting moment-resisting frame buildings through scaled-down tests.These experiments utilize scaled models representing different ... The present study investigates the influence of embedment depth of isolated footing supporting moment-resisting frame buildings through scaled-down tests.These experiments utilize scaled models representing different building aspect ratios and footing embedment depths.All the model tests are subjected to scaled-down input ground motions of different intensities and magnitudes.These model tests are performed in laminar shear containers through shake table testing.The results obtained for different cases of soil-foundation-structure systems and fixed-base conditions are expressed in terms of natural frequency,peak spectral acceleration,frequency response,lateral deformation,inter-storey drifts,and rocking of the foundation.The analysis reveals that the natural frequency of the coupled system on isolated footings diminishes by 27.52%–58.21%relative to fixed-base conditions,highlighting the significance of accounting for soil-foundation-structure interaction effects.Moreover,a notable increase of 52.97%in the natural frequency of the coupled system is observed as the embedment depth of the footing increases from 0.75 to 6.Additionally,the study demonstrates that the inter-storey drift of the 5-storey building remains well within acceptable limits under dense soil conditions.Consequently,within the parameter range explored in this research,the study concludes that soil-foundation-structure interaction effects are insignificant for low-rise buildings(H≤15 m)supported on isolated footings during seismic events. 展开更多
关键词 shake table test Isolated footing Soil-foundation-structure interaction Laminar shear box EARTHQUAKE
在线阅读 下载PDF
Experimental investigation on response of biocemented coral sand pile composite foundation under seismic waves
19
作者 Xiangwei Fang Chao Chen +3 位作者 Ganggang Zhou Zhixiong Chen Chunyan Wang Luqi Wang 《Biogeotechnics》 2025年第2期62-71,共10页
The biocemented coral sand pile composite foundation represents an innovative foundation improvement technology,utilizing Microbially Induced Carbonate Precipitation(MICP)to consolidate a specific volume of coral sand... The biocemented coral sand pile composite foundation represents an innovative foundation improvement technology,utilizing Microbially Induced Carbonate Precipitation(MICP)to consolidate a specific volume of coral sand within the foundation into piles with defined strength,thereby enabling them to collaboratively bear external loads with the surrounding unconsolidated coral sand.In this study,a series of shaking table model tests were conducted to explore the dynamic response of the biocemented coral sand pile composite foundation under varying seismic wave types and peak accelerations.The surface macroscopic phenomena,excess pore water pressure ratio,acceleration response,and vertical settlement were measured and analysed in detail.Test results show that seismic wave types play a decisive role in the macroscopic surface phenomena and the response of the excess pore water pressure ratio.The cumulative settlement of the upper structure under the action of Taft waves was about 1.5 times that of El Centro waves and Kobe waves.The most pronounced liquefaction phenomena were recorded under the Taft wave,followed by the El Centro wave,and subsequently the Kobe wave.An observed positive correlation was established between the liquefaction phenomenon and the Aristotelian in-tensity of the seismic waves.However,variations in seismic wave types exerted minimal influence on the ac-celeration amplification factor of the coral sand foundation.Analysis of the acceleration amplification factor revealed a triphasic pattern-initially increasing,subsequently decreasing,and finally increasing again-as burial depth increased,in relation to the peak value of the input acceleration.This study confirms that the biocemented coral sand pile composite foundation can effectively enhance the liquefaction resistance of coral sand foundations.. 展开更多
关键词 Coral sand Biocemented coral sand pile Composite foundation LIQUEFACTION Shaking table test
在线阅读 下载PDF
Influence of a non-free field subsurface seismic history on the liquefaction resistance of sandy soils
20
作者 Liu Liteng Wang Xiaolei +3 位作者 Liu Run Liu Libo Cao Zhipeng Zhang Fan 《Earthquake Engineering and Engineering Vibration》 2025年第1期53-68,共16页
Seismic-induced liquefaction of sandy soils can fail foundations in the vicinity of buildings.To investigate the effect of a non-free field subsurface seismic history on the ability of saturated sandy soils to resist ... Seismic-induced liquefaction of sandy soils can fail foundations in the vicinity of buildings.To investigate the effect of a non-free field subsurface seismic history on the ability of saturated sandy soils to resist liquefaction,four shaking events with different accelerations were input to the sandy soils in the non-free-field.The results of the study revealed that:(1)Shallow soils that are not free-field undergo acceleration amplification effects after being subjected to seismic loading.(2)Building overburden pressure reduces the sensitivity of the shallow soils directly below in small and moderate earthquakes,which are more prone to rearranging and forming unstable structures under strong seismic effects.The excess pore pressure response on the load side resembles that of a free site,with the depth range of the liquefaction strength of soils affected by the seismic history,increasing progressively as input seismic intensity increases.(3)After experiencing earthquakes of different intensities,the excess pore pressure directly below the building overburden pressure at 0.1 m and 0.2 m is greater than that at the side.At the same time,the side of the building structure is more prone to liquefaction than the soil directly below it. 展开更多
关键词 non-free site seismic history liquefaction resistance excess pore pressure shaking table test
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部