For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method...During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method is a promising design tool for tracking, modelling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. In the conventional level set methods, the level set equation is solved to evolve the interface using a capturing Eulerian approach. The solving procedure requires an appropriate choice of the upwind schemes, reinitialization, etc. Our goal is to include Multiquadric Radial Basis Functions (MQ RBFs) into the level set method to construct a more efficient approach and stabilize the solution process with the adaptive greedy algorithm. This paper presents an alternative approach to the conventional level set methods for solving moving-boundary problems. The solution was compared to the solution calculated by the exact explicit lime integration scheme. The examples show that MQ RBFs and adaptive greedy algorithm is a very promising calculation scheme.展开更多
In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relat...In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.展开更多
The interaction between free surface flow and structure is investigated using a new level set immersed boundary method.The incorporation of an improved immersed boundary method with a free surface capture scheme imple...The interaction between free surface flow and structure is investigated using a new level set immersed boundary method.The incorporation of an improved immersed boundary method with a free surface capture scheme implemented in a Navier-Stokes solver allows the interaction between fluid flow with free surface and moving body/bodies of almost arbitrary shape to be modelled.A new algorithm is proposed to locate exact forcing points near solid boundaries,which provides an accurate numerical solution.The discretized linear system of the Poisson pressure equation is solved using the Generalized Minimum Residual(GMRES)method with incomplete LU preconditioning.Uniform flow past a cylinder at Reynolds number Re=100 is modelled using the present model and results agree well with the experiment and numerical data in the literature.Water exit and entry of a cylinder at the prescribed velocity is also investigated.The predicted slamming coefficient is in good agreement with experimental data and previous numerical simulations using a ComFlow model.The vertical slamming force and pressure distribution for the free falling wedge is also studied by the present model and comparisons with available theoretical solutions and experimental data are made.展开更多
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
文摘During the past decade, increasing attention has been given to the development of meshless methods using radial basis functions for the numerical solution of Partial Differential Equations (PDEs). A level set method is a promising design tool for tracking, modelling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. In the conventional level set methods, the level set equation is solved to evolve the interface using a capturing Eulerian approach. The solving procedure requires an appropriate choice of the upwind schemes, reinitialization, etc. Our goal is to include Multiquadric Radial Basis Functions (MQ RBFs) into the level set method to construct a more efficient approach and stabilize the solution process with the adaptive greedy algorithm. This paper presents an alternative approach to the conventional level set methods for solving moving-boundary problems. The solution was compared to the solution calculated by the exact explicit lime integration scheme. The examples show that MQ RBFs and adaptive greedy algorithm is a very promising calculation scheme.
基金supported by the National Natural Science Foundation of China (Grant No.12072114)the National Key Research and Development Plan (Grant No.2020YFB1709401)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).
文摘In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.
基金the support of the South West of England Regional Development Agency in funding this project through Peninsular Research Institute for Marine Renewable Energy(http://www.primare.org/).
文摘The interaction between free surface flow and structure is investigated using a new level set immersed boundary method.The incorporation of an improved immersed boundary method with a free surface capture scheme implemented in a Navier-Stokes solver allows the interaction between fluid flow with free surface and moving body/bodies of almost arbitrary shape to be modelled.A new algorithm is proposed to locate exact forcing points near solid boundaries,which provides an accurate numerical solution.The discretized linear system of the Poisson pressure equation is solved using the Generalized Minimum Residual(GMRES)method with incomplete LU preconditioning.Uniform flow past a cylinder at Reynolds number Re=100 is modelled using the present model and results agree well with the experiment and numerical data in the literature.Water exit and entry of a cylinder at the prescribed velocity is also investigated.The predicted slamming coefficient is in good agreement with experimental data and previous numerical simulations using a ComFlow model.The vertical slamming force and pressure distribution for the free falling wedge is also studied by the present model and comparisons with available theoretical solutions and experimental data are made.