Traditionally, in a cam mechanism, the cam is driven by an actuator at a constant speed. The motion characteristics of the follower are determined once the cam profile is designed. This paper presents a novel theory n...Traditionally, in a cam mechanism, the cam is driven by an actuator at a constant speed. The motion characteristics of the follower are determined once the cam profile is designed. This paper presents a novel theory named "integrated design of cam mechanisms and servo-control systems" whose basic idea is varying the input speed trajectory of the cam by a microcomputer-controlled servomotor to improve kinematic and dynamic characteristics of the follower system. The philosophy of the theory is developing superior machines by taking advantage of the flexibility of servo-control systems to compensate for disadvantages of rigid cam mechanisms. The systematic design criteria of the cam-servo-integrated system are developed and an approach based on optimal-control theory is presented for to select suitable cam speed functions, hence the basis of the theory is formed.展开更多
为实现多轴伺服驱动压力机的同步控制,文章基于传统偏差耦合控制提出一种虚拟轴改进型偏差耦合同步控制方法,并搭建同步控制实验平台进行现场验证。基于压力机结构和控制模型实现模糊比例积分微分(proportional integral derivative,PID...为实现多轴伺服驱动压力机的同步控制,文章基于传统偏差耦合控制提出一种虚拟轴改进型偏差耦合同步控制方法,并搭建同步控制实验平台进行现场验证。基于压力机结构和控制模型实现模糊比例积分微分(proportional integral derivative,PID)位置跟踪控制;在传统偏差耦合控制结构中添加评价误差模块,搭建一种改进型偏差耦合同步控制方法,提高同步系统的抗扰动能力和同步精度;将虚拟轴引入改进型偏差耦合控制结构中,从而解除多轴间的直接耦合关系,简化改进型同步位移补偿结构。实验结果表明,该方法有效提高了压力机同步抗扰动能力和稳态同步精度。展开更多
文摘Traditionally, in a cam mechanism, the cam is driven by an actuator at a constant speed. The motion characteristics of the follower are determined once the cam profile is designed. This paper presents a novel theory named "integrated design of cam mechanisms and servo-control systems" whose basic idea is varying the input speed trajectory of the cam by a microcomputer-controlled servomotor to improve kinematic and dynamic characteristics of the follower system. The philosophy of the theory is developing superior machines by taking advantage of the flexibility of servo-control systems to compensate for disadvantages of rigid cam mechanisms. The systematic design criteria of the cam-servo-integrated system are developed and an approach based on optimal-control theory is presented for to select suitable cam speed functions, hence the basis of the theory is formed.
文摘为实现多轴伺服驱动压力机的同步控制,文章基于传统偏差耦合控制提出一种虚拟轴改进型偏差耦合同步控制方法,并搭建同步控制实验平台进行现场验证。基于压力机结构和控制模型实现模糊比例积分微分(proportional integral derivative,PID)位置跟踪控制;在传统偏差耦合控制结构中添加评价误差模块,搭建一种改进型偏差耦合同步控制方法,提高同步系统的抗扰动能力和同步精度;将虚拟轴引入改进型偏差耦合控制结构中,从而解除多轴间的直接耦合关系,简化改进型同步位移补偿结构。实验结果表明,该方法有效提高了压力机同步抗扰动能力和稳态同步精度。