Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though ...Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.展开更多
Aiming at the load imbalance and poor scalability in single-tier Web server clusters, an efficient load balancing ap- proach is proposed for constructing an N-hierarchical (multi-tier) Web server cluster. In each la...Aiming at the load imbalance and poor scalability in single-tier Web server clusters, an efficient load balancing ap- proach is proposed for constructing an N-hierarchical (multi-tier) Web server cluster. In each layer, multiple load balancers are set to receive the user requests simultaneously, and different load bal- ancing algorithms are used to construct the high-scalable Web cluster system. At the same time, an improved load balancing al- gorithm is proposed, which can dynamically calculate weights according to the utilization of the server resources, and reasonably distribute the loads for each server according to the load status of the servers. The experimental results show that the proposed ap- proach can greatly decrease the load imbalance among the Web servers and reduce the response time of the entire Web cluster system.展开更多
In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated tasks.This phenomenon ensures that the least possible number of hosts is used without compromise ...In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated tasks.This phenomenon ensures that the least possible number of hosts is used without compromise in meeting the Service Level Agreement(SLA).To consolidate the workloads,the hosts are segregated into three categories:normal hosts,under-loaded hosts,and over-loaded hosts based on their utilization.It is to be noted that the identification of an extensively used host or underloaded host is challenging to accomplish.Thresh-old values were proposed in the literature to detect this scenario.The current study aims to improve the existing methods that choose the underloaded hosts,get rid of Virtual Machines(VMs)from them,andfinally place them in some other hosts.The researcher proposes a Host Resource Utilization Aware(HRUAA)Algorithm to detect those underloaded and place its virtual machines on different hosts in a vibrant Cloud environment.The mechanism presented in this study is contrasted with existing mechanisms empirically.The results attained from the study estab-lish that numerous hosts can be shut down,while at the same time,the user's workload requirement can also be met.The proposed method is energy-efficient in workload consolidation,saves cost and time,and leverages active hosts.展开更多
文摘Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.
基金Supported by the National Natural Science Foundation of China(61073063,61173029,61272182 and 61173030)the Ocean Public Welfare Scientific Research Project of State Oceanic Administration of China(201105033)National Digital Ocean Key Laboratory Open Fund Projects(KLDO201306)
文摘Aiming at the load imbalance and poor scalability in single-tier Web server clusters, an efficient load balancing ap- proach is proposed for constructing an N-hierarchical (multi-tier) Web server cluster. In each layer, multiple load balancers are set to receive the user requests simultaneously, and different load bal- ancing algorithms are used to construct the high-scalable Web cluster system. At the same time, an improved load balancing al- gorithm is proposed, which can dynamically calculate weights according to the utilization of the server resources, and reasonably distribute the loads for each server according to the load status of the servers. The experimental results show that the proposed ap- proach can greatly decrease the load imbalance among the Web servers and reduce the response time of the entire Web cluster system.
文摘In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated tasks.This phenomenon ensures that the least possible number of hosts is used without compromise in meeting the Service Level Agreement(SLA).To consolidate the workloads,the hosts are segregated into three categories:normal hosts,under-loaded hosts,and over-loaded hosts based on their utilization.It is to be noted that the identification of an extensively used host or underloaded host is challenging to accomplish.Thresh-old values were proposed in the literature to detect this scenario.The current study aims to improve the existing methods that choose the underloaded hosts,get rid of Virtual Machines(VMs)from them,andfinally place them in some other hosts.The researcher proposes a Host Resource Utilization Aware(HRUAA)Algorithm to detect those underloaded and place its virtual machines on different hosts in a vibrant Cloud environment.The mechanism presented in this study is contrasted with existing mechanisms empirically.The results attained from the study estab-lish that numerous hosts can be shut down,while at the same time,the user's workload requirement can also be met.The proposed method is energy-efficient in workload consolidation,saves cost and time,and leverages active hosts.