Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-eff...Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-effective geophysical technique can acquire high-density data;however,uncertainty and nonuniqueness inherent in ERT impede its usage for stratigraphy identification.This paper integrates ERT and onsite observations for the first time to propose a novel method for characterizing stratigraphic profiles.The method consists of two steps:(1)ERT for prior knowledge:ERT data are processed by soft clustering using the Gaussian mixture model,followed by probability smoothing to quantify its depthdependent uncertainty;and(2)Observations for calibration:a spatial sequential Bayesian updating(SSBU)algorithm is developed to update the prior knowledge based on likelihoods derived from onsite observations,namely topsoil and boreholes.The effectiveness of the proposed method is validated through its application to a real slope site in Foshan,China.Comparative analysis with advanced borehole-driven methods highlights the superiority of incorporating ERT data in stratigraphic modeling,in terms of prediction accuracy at borehole locations and sensitivity to borehole data.Informed by ERT,reduced sensitivity to boreholes provides a fundamental solution to the longstanding challenge of sparse measurements.The paper further discusses the impact of ERT uncertainty on the proposed model using time-lapse measurements,the impact of model resolution,and applicability in engineering projects.This study,as a breakthrough in stratigraphic modeling,bridges gaps in combining geophysical and geotechnical data to address measurement sparsity and paves the way for more economical geotechnical exploration.展开更多
Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squ...Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.展开更多
For uncertainty quantification of complex models with high-dimensional,nonlinear,multi-component coupling like digital twins,traditional statistical sampling methods,such as random sampling and Latin hypercube samplin...For uncertainty quantification of complex models with high-dimensional,nonlinear,multi-component coupling like digital twins,traditional statistical sampling methods,such as random sampling and Latin hypercube sampling,require a large number of samples,which entails huge computational costs.Therefore,how to construct a small-size sample space has been a hot issue of interest for researchers.To this end,this paper proposes a sequential search-based Latin hypercube sampling scheme to generate efficient and accurate samples for uncertainty quantification.First,the sampling range of the samples is formed by carving the polymorphic uncertainty based on theoretical analysis.Then,the optimal Latin hypercube design is selected using the Latin hypercube sampling method combined with the"space filling"criterion.Finally,the sample selection function is established,and the next most informative sample is optimally selected to obtain the sequential test sample.Compared with the classical sampling method,the generated samples can retain more information on the basis of sparsity.A series of numerical experiments are conducted to demonstrate the superiority of the proposed sequential search-based Latin hypercube sampling scheme,which is a way to provide reliable uncertainty quantification results with small sample sizes.展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
: This paper proposes a new sequential similarity detection algorithm (SSDA), which can overcome matching error caused by grayscale distortion; meanwhile, time consumption is much less than that of regular algorith...: This paper proposes a new sequential similarity detection algorithm (SSDA), which can overcome matching error caused by grayscale distortion; meanwhile, time consumption is much less than that of regular algorithms based on image feature. The algorithm adopts Sobel operator to deal with subgraph and template image, and regards the region which has maximum relevance as final result. In order to solve time-consuming problem existing in original algorithm, a coarse-to-fine matching method is put forward. Besides, the location correlation keeps updating and remains the minimum value in the whole scanning process, which can significantly decrease time consumption. Experiments show that the algorithm proposed in this article can not only overcome gray distortion, but also ensure accuracy. Time consumption is at least one time orders of magnitude shorter than that of primal algorithm.展开更多
The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But t...The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But there is little research on comparative study between sequential zoning and simultaneous zoning.In order to help the designers to choose the suitable zoning policy for picker-to-parts system reasonably and quickly,a systemic selection method is presented.Essentially,both zoning and batching are order clustering,so the customer order sheet can be divided into many unit grids.After the time formulation in one-dimensional unit was defined,the time models for each zoning policy in two-dimensional space were established using filling curves and sequence models to link the one-dimensional unit grids.In consideration of "U" shaped dual tour into consideration,the subtraction value of order picking time between sequential zoning and simultaneous zoning was defined as the objective function to select the suitable zoning policy based on time models.As it is convergent enough,genetic algorithm is adopted to find the optimal value of order picking time.In the experimental study,5 different kinds of order/stock keeping unit(SKU) matrices with different densities d and quantities q following uniform distribution were created in order to test the suitability of sequential zoning and simultaneous zoning to different kinds of orders.After parameters setting,experimental orders inputting and iterative computations,the optimal order picking time for each zoning policy was gotten.By observing whether the delta time between them is greater than 0 or not,the suitability of zoning policies for picker-to-parts system were obtained.The significant effect of batch size b,zone number z and density d on suitability was also found by experimental study.The proposed research provides a new method for selection between sequential zoning and simultaneous zoning for picker-to-parts system,and improves the rationality and efficiency of selection process in practical design.展开更多
Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constra...Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions.展开更多
Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to ca...Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to calculate the real risk level of the sequential test decision and the average number of samples under various test conditions.A concept,that is "rejecting as soon as possible",is put forward and an alternate operation strategy is conducted.The simulation results show that it can reduce the test expenses.展开更多
To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(...To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(CAL-LSN) is proposed in this paper. In CALLSN, mobile agents are used to gather routing information actively. CAL-LSN can utilise the information of the physical layer to make routing decision during the route construction phase. In order to achieve load balancing, CALLSN makes use of a multi-objective optimization model. Meanwhile, how to take the value of some key parameters is discussed while designing the algorithm so as to improve the reliability. The performance is measured by the packet delivery rate, the end-to-end delay, the link utilization and delay jitter. Simulation results show that CAL-LSN performs well in balancing traffic load and increasing the packet delivery rate. Meanwhile, the end-to-end delay and delay jitter performance can meet the requirement of video transmission.展开更多
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing ...In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.展开更多
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)...In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.展开更多
We present an iterative algorithm for approximating an unknown function sequentially using random samples of the function values and gradients. This is an extension of the recently developed sequential approximation (...We present an iterative algorithm for approximating an unknown function sequentially using random samples of the function values and gradients. This is an extension of the recently developed sequential approximation (SA) method, which approximates a target function using samples of function values only. The current paper extends the development of the SA methods to the Sobolev space and allows the use of gradient information naturally. The algorithm is easy to implement, as it requires only vector operations and does not involve any matrices. We present tight error bound of the algorithm, and derive an optimal sampling probability measure that results in fastest error convergence. Numerical examples are provided to verify the theoretical error analysis and the effectiveness of the proposed SA algorithm.展开更多
In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based techni...In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on 1SCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
基金the financial support from the National Key R&D Program of China(Grant No.2021YFC3001003)Science and Technology Development Fund,Macao SAR(File No.0056/2023/RIB2)Guangdong Provincial Department of Science and Technology(Grant No.2022A0505030019).
文摘Challenges in stratigraphic modeling arise from underground uncertainty.While borehole exploration is reliable,it remains sparse due to economic and site constraints.Electrical resistivity tomography(ERT)as a cost-effective geophysical technique can acquire high-density data;however,uncertainty and nonuniqueness inherent in ERT impede its usage for stratigraphy identification.This paper integrates ERT and onsite observations for the first time to propose a novel method for characterizing stratigraphic profiles.The method consists of two steps:(1)ERT for prior knowledge:ERT data are processed by soft clustering using the Gaussian mixture model,followed by probability smoothing to quantify its depthdependent uncertainty;and(2)Observations for calibration:a spatial sequential Bayesian updating(SSBU)algorithm is developed to update the prior knowledge based on likelihoods derived from onsite observations,namely topsoil and boreholes.The effectiveness of the proposed method is validated through its application to a real slope site in Foshan,China.Comparative analysis with advanced borehole-driven methods highlights the superiority of incorporating ERT data in stratigraphic modeling,in terms of prediction accuracy at borehole locations and sensitivity to borehole data.Informed by ERT,reduced sensitivity to boreholes provides a fundamental solution to the longstanding challenge of sparse measurements.The paper further discusses the impact of ERT uncertainty on the proposed model using time-lapse measurements,the impact of model resolution,and applicability in engineering projects.This study,as a breakthrough in stratigraphic modeling,bridges gaps in combining geophysical and geotechnical data to address measurement sparsity and paves the way for more economical geotechnical exploration.
基金supported by the National Natural Science Foundation of China(Nos.U2267205 and 12475124)a ZSTU intramural grant(22062267-Y)Excellent Graduate Thesis Cultivation Fund(LW-YP2024011).
文摘Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
基金co-supported by the National Natural Science Foundation of China(Nos.51875014,U2233212 and 51875015)the Natural Science Foundation of Beijing Municipality,China(No.L221008)+1 种基金Science,Technology Innovation 2025 Major Project of Ningbo of China(No.2022Z005)the Tianmushan Laboratory Project,China(No.TK2023-B-001)。
文摘For uncertainty quantification of complex models with high-dimensional,nonlinear,multi-component coupling like digital twins,traditional statistical sampling methods,such as random sampling and Latin hypercube sampling,require a large number of samples,which entails huge computational costs.Therefore,how to construct a small-size sample space has been a hot issue of interest for researchers.To this end,this paper proposes a sequential search-based Latin hypercube sampling scheme to generate efficient and accurate samples for uncertainty quantification.First,the sampling range of the samples is formed by carving the polymorphic uncertainty based on theoretical analysis.Then,the optimal Latin hypercube design is selected using the Latin hypercube sampling method combined with the"space filling"criterion.Finally,the sample selection function is established,and the next most informative sample is optimally selected to obtain the sequential test sample.Compared with the classical sampling method,the generated samples can retain more information on the basis of sparsity.A series of numerical experiments are conducted to demonstrate the superiority of the proposed sequential search-based Latin hypercube sampling scheme,which is a way to provide reliable uncertainty quantification results with small sample sizes.
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
基金the National Natural Science Foundation of China(No.61165008)
文摘: This paper proposes a new sequential similarity detection algorithm (SSDA), which can overcome matching error caused by grayscale distortion; meanwhile, time consumption is much less than that of regular algorithms based on image feature. The algorithm adopts Sobel operator to deal with subgraph and template image, and regards the region which has maximum relevance as final result. In order to solve time-consuming problem existing in original algorithm, a coarse-to-fine matching method is put forward. Besides, the location correlation keeps updating and remains the minimum value in the whole scanning process, which can significantly decrease time consumption. Experiments show that the algorithm proposed in this article can not only overcome gray distortion, but also ensure accuracy. Time consumption is at least one time orders of magnitude shorter than that of primal algorithm.
基金supported by National Natural Science Foundation of China (Grant No. 50175064)China Scholarship Council (Grant No. 2008622078)Material Handling Industry of America (Grant No. 12251)
文摘The existing research of sequential zoning system and simultaneous zoning system mainly focuses on some optimization problems such as workload balance,product assignment and simulation for each system separately.But there is little research on comparative study between sequential zoning and simultaneous zoning.In order to help the designers to choose the suitable zoning policy for picker-to-parts system reasonably and quickly,a systemic selection method is presented.Essentially,both zoning and batching are order clustering,so the customer order sheet can be divided into many unit grids.After the time formulation in one-dimensional unit was defined,the time models for each zoning policy in two-dimensional space were established using filling curves and sequence models to link the one-dimensional unit grids.In consideration of "U" shaped dual tour into consideration,the subtraction value of order picking time between sequential zoning and simultaneous zoning was defined as the objective function to select the suitable zoning policy based on time models.As it is convergent enough,genetic algorithm is adopted to find the optimal value of order picking time.In the experimental study,5 different kinds of order/stock keeping unit(SKU) matrices with different densities d and quantities q following uniform distribution were created in order to test the suitability of sequential zoning and simultaneous zoning to different kinds of orders.After parameters setting,experimental orders inputting and iterative computations,the optimal order picking time for each zoning policy was gotten.By observing whether the delta time between them is greater than 0 or not,the suitability of zoning policies for picker-to-parts system were obtained.The significant effect of batch size b,zone number z and density d on suitability was also found by experimental study.The proposed research provides a new method for selection between sequential zoning and simultaneous zoning for picker-to-parts system,and improves the rationality and efficiency of selection process in practical design.
文摘Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions.
文摘Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to calculate the real risk level of the sequential test decision and the average number of samples under various test conditions.A concept,that is "rejecting as soon as possible",is put forward and an alternate operation strategy is conducted.The simulation results show that it can reduce the test expenses.
基金supported by the National Natural Science Foundation of China under Grant No.61271281the National High Technology Research and Development Program of China (863 Program) under Grant No.SS2013AA010503
文摘To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(CAL-LSN) is proposed in this paper. In CALLSN, mobile agents are used to gather routing information actively. CAL-LSN can utilise the information of the physical layer to make routing decision during the route construction phase. In order to achieve load balancing, CALLSN makes use of a multi-objective optimization model. Meanwhile, how to take the value of some key parameters is discussed while designing the algorithm so as to improve the reliability. The performance is measured by the packet delivery rate, the end-to-end delay, the link utilization and delay jitter. Simulation results show that CAL-LSN performs well in balancing traffic load and increasing the packet delivery rate. Meanwhile, the end-to-end delay and delay jitter performance can meet the requirement of video transmission.
基金Acknowledgements Supported by the Fundamental Research Funds for the Central Universities(72104988), The National High Technology Research and Development Program of China ( 2009AA01 Z204, 2007AA01Z429, 2007AA01Z405), The post doctor science foundation of China (20090451495, 20090461415) The National Natural science foundation of China (60874085, 60633020, 60803151 ), The Natural Science Basic Research Plan in Shaanxi Province of China (Program No. SJ08F13), The Aviation Sci- ence Foundation of China (2007ZD31003, 2008ZD31001 )
文摘In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.
文摘In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.
文摘We present an iterative algorithm for approximating an unknown function sequentially using random samples of the function values and gradients. This is an extension of the recently developed sequential approximation (SA) method, which approximates a target function using samples of function values only. The current paper extends the development of the SA methods to the Sobolev space and allows the use of gradient information naturally. The algorithm is easy to implement, as it requires only vector operations and does not involve any matrices. We present tight error bound of the algorithm, and derive an optimal sampling probability measure that results in fastest error convergence. Numerical examples are provided to verify the theoretical error analysis and the effectiveness of the proposed SA algorithm.
基金Supported by NSF of the United States under contract 5978 East Asia and Pacific Program 9602485
文摘In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on 1SCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.