[Objective] This study was to explore the difference of kriging interpolation and sequential Gaussian simulation on analyzing soil heavy metal pollution with a view to provide references for analyzing the heavy metal ...[Objective] This study was to explore the difference of kriging interpolation and sequential Gaussian simulation on analyzing soil heavy metal pollution with a view to provide references for analyzing the heavy metal pollution of soil. [Method] The sampling data of soil copper from a county of Liaocheng, Shandong Province was set as the study objective. Kriging interpolation and sequential Gaussian simu- lation were used to simulate the spatial distribution of soil copper. And 30 sampling points were selected as the cross-validation data set to compare the two interpola- tion methods. [Result] Kriging method and Gaussian sequential simulation have their own advantages on simulating mean segment and extreme segment, therefore, re- searchers should choose the proper method based on the characteristics of test data and application purposes. [Conclusion] Analysis of soil heavy metal pollution is the prerequisite for soil management and ecological restoration. The result of this study is of important significance for choosing different interpolating and simulating methods to analyze soil heavy metal pollution based on different purposes.展开更多
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention...Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.展开更多
It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial...It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection.展开更多
Risk quantification in grade is critical for mine design and planning.Grade uncertainty is assessed using multiple grade realizations,from geostatistical conditional simulations,which are effective to evaluate local o...Risk quantification in grade is critical for mine design and planning.Grade uncertainty is assessed using multiple grade realizations,from geostatistical conditional simulations,which are effective to evaluate local or global uncertainty by honouring spatial correlation structures.The sequential Gaussian conditional simulation was used to assess uncertainty of grade estimates and illustrate simulated models in Sivas gold deposit,Turkey.In situ variability and risk quantification of the gold grade were assessed by probabilistic approach based on the sequential Gaussian simulations to yield a series of conditional maps characterized by equally probable spatial distribution of the gold grade for the study area.The simulation results were validated by a number of tests such as descriptive statistics,histogram,variogram and contour map reproductions.The case study demonstrates the efficiency of the method in assessing risk associated with geological and engineering variable such as the gold grade variability and distribution.The simulated models can be incorporated into exploration,exploitation and scheduling of the gold deposit.展开更多
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatial...We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatially-changed illumination,and uncertainties of block size in traditional method.The proposed method first partitions the image into square blocks that reflect local characteristics of the image.After image partitioning,each block is binarized using Otsu’s thresholding method.To minimize the influence of the block size and the boundary effect,we incorporate Monte-Carlo simulation into the binarization algorithm.Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map,which illustrates the probability of each pixel classified as foreground.By setting a probability threshold,and separating foreground and background of the source image,the final binary image can be obtained.The described method has been tested by benchmark tests.Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.展开更多
As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large ...As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis.By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute,China Meteorological Administration(CMASTI),typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen.We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons.In addition,the Yah Meng(YM)wind field model was introduced,and the sensitivity of the YM model to several parameters discussed.Using the YM wind field model,extreme wind speeds were extracted from the virtual typhoons.The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.展开更多
The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By thi...The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.展开更多
Based on the steady-state solution of finite-state birth and death process, the principle of line configuration for shared multi-channel system is analyzed. Call congestion ratio equation and channel utilization ratio...Based on the steady-state solution of finite-state birth and death process, the principle of line configuration for shared multi-channel system is analyzed. Call congestion ratio equation and channel utilization ratio equation are deduced, and visualized data analysis is presented. The analy-sis indicates that, calculated with the proposed equations, the overestimate for call congestion ratio and channel utilization ratio can be rectified, and thereby the cost of channels can be saved by 2000 in a small system.With MATLAB programming, line configuration methods are provided. In order to generally and intuitively show the dynamic running of the system, and to analyze,promote and improve it, the system is simulated using M/M/n/n/m queuing model and Monte-Carlo method. In addition, the simulation validates the correctness of the theoretical analysis and optimizing configuration method.展开更多
A modified Monte-Carlo(MC) method to simulate the regular growth of binary eutectic alloys is presented. It is found that the growth rate has a linear dependence on the chemical potential difference between the solid ...A modified Monte-Carlo(MC) method to simulate the regular growth of binary eutectic alloys is presented. It is found that the growth rate has a linear dependence on the chemical potential difference between the solid and liquid; the relation between the lamellar spacing A and growth rate R accords well with the prediction of Jackson-Hunt(JH) theory unless the growth rate is very low.展开更多
This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand...This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.展开更多
Atomic growth process and structure of Amorphous Electroless Coating have been studied, using Monte-Carlo simulation method. The simulation results of amorphous Ni80P20 coating show that PDFs are in accordance with pr...Atomic growth process and structure of Amorphous Electroless Coating have been studied, using Monte-Carlo simulation method. The simulation results of amorphous Ni80P20 coating show that PDFs are in accordance with practical values. The migrations of adatoms in coating's growth are different from that of solidification of amorphous materials. In some cases, the migrated adatoms in the process of growth of amorphous coating are not enough to occupy all vacancies and traps, so the amorphous coating is micro-porous. The immovable probability k and the largest migration distance of adatoms, which lie on the electroless bath components, affect the PDF, volume density and microporosity remarkably.展开更多
Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications...Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.展开更多
The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power systems.In light of this issue,this paper presents a power system relia...The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power systems.In light of this issue,this paper presents a power system reliability evaluation method based on sequential Monte Carlo simulation(SMCS)to quantify system reliability considering multiple failure modes of components.First,a three-state component reliability model is established to explicitly describe the state transition process of the component subject to both aging failure and random failure modes.In this model,the impact of each failure mode is decoupled and characterized as the combination of two state duration variables,which are separately modeled using specific probability distributions.Subsequently,SMCS is used to integrate the three-state component reliability model for state transition sequence generation and system reliability evaluation.Therefore,various reliability metrics,including the probability of load curtailment(PLC),expected frequency of load curtailment(EFLC),and expected energy not supplied(EENS),can be estimated.To ensure the applicability of the proposed method,Hash table grouping and the maximum feasible load level judgment techniques are jointly adopted to enhance its computational performance.Case studies are conducted on different aging scenarios to illustrate and validate the effectiveness and practicality of the proposed method.展开更多
For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient,Monte Carlo(MC) techniques are considered to be more effective than other algorithms, such as finite element method or f...For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient,Monte Carlo(MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem.Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.展开更多
The epidermal growth factor receptor(EGFR)—tyrosine kinase inhibitors(TKIs) monotherapies have limited efficacy in the treatment of EGFR mutation-negative non-small cell lung cancers(NSCLCs). In the present stu...The epidermal growth factor receptor(EGFR)—tyrosine kinase inhibitors(TKIs) monotherapies have limited efficacy in the treatment of EGFR mutation-negative non-small cell lung cancers(NSCLCs). In the present study, we aimed to investigate the combined effect of erlotinib(ER) and cabozantinib(CAB) on NSCLC cell lines harboring wild-type EGFR and to optimize the dosage regimens using pharmacodynamic(PD) modeling and simulation. Therefore, we examined the combined effect of ER and CAB on cell viability, cloning, apoptosis induction, migration and growth dynamics in H1299 and A549 cells. PD modeling and simulation were also performed to quantitatively describe the H1299 cells growth dynamics and to optimize the dosage regimens as well. Our results showed that CAB effectively enhanced the sensitivity of both cell lines to ER. The PD models fitted the data well, and some important parameters were obtained. The exponential(λ_0) and linear(λ_1) growth rates of H1299 cells were 0.0241 h^(–1) and 360 cells?h^(–1), respectively. The Emax of ER and CAB was 0.0091 h^(–1) and 0.0085 h^(–1), and the EC50 was 0.812 μM and 1.16 μM, respectively. The synergistic effect observed in the experiments was further confirmed by the estimated combination index φ(1.37),(95% confidence interval: 1.24–1.50), obtained from PD modeling. Furthermore, the dosage regimens were optimized using simulations. In summary, both the experimental and modeling results demonstrated the synergistic interaction between ER and CAB in NSCLCs without EGFR mutations. Sequential combinations of ER and CAB provided an option for the therapy of the NSCLCs with wild-type EGFR, which would provide some references for preclinical study and translational research as well.展开更多
On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the m...On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.展开更多
Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constra...Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions.展开更多
In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not ...In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not been addressed up to now. The crack in the beam at different locations and with different depths is considered as one group of damage, each as an individual imperfection. In addition, bearing immobility is considered as another type of problem in the beam. Mass, stiffness, damping and velocity of the oscillator are assumed to be random parameters. An improved perturbation technique is applied to reduce the simulation time. It was found that there is a maximum value of the variance of each uncertain parameter, in which the maximum reliability of the perturbation method can be achieved, and that this maximum value can be obtained by the Alpha-Hilber Monte-Carlo simulation method. The simulation results reveal that the mass and the velocity uncertainty cause high uncertainty in the deflection of the beam. Also, the pattern of the deflection is not affected by different random oscillator parameters, and as a result, the type of damage can be identified even with high uncertainty. Moreover, the deflection in the nodes around the mid-span of the beam provides the best information regarding the imperfections, and consequently leads to the best sensor locations in an actual experiment.展开更多
The ionization time in sequential double ionization with an elliptically polarized laser pulse has been examined theo- retically using a semiclassical method. The significant discrepancy between the ionization time fo...The ionization time in sequential double ionization with an elliptically polarized laser pulse has been examined theo- retically using a semiclassical method. The significant discrepancy between the ionization time for parallel and anti-parallel electron emission is predicted numerically for the first time. The impact of the carrier envelope phase offset is also studied in this work.展开更多
基金Supported by the Science and Technology Development Program of Shandong Province (Soft Science) (2009RKB220),China~~
文摘[Objective] This study was to explore the difference of kriging interpolation and sequential Gaussian simulation on analyzing soil heavy metal pollution with a view to provide references for analyzing the heavy metal pollution of soil. [Method] The sampling data of soil copper from a county of Liaocheng, Shandong Province was set as the study objective. Kriging interpolation and sequential Gaussian simu- lation were used to simulate the spatial distribution of soil copper. And 30 sampling points were selected as the cross-validation data set to compare the two interpola- tion methods. [Result] Kriging method and Gaussian sequential simulation have their own advantages on simulating mean segment and extreme segment, therefore, re- searchers should choose the proper method based on the characteristics of test data and application purposes. [Conclusion] Analysis of soil heavy metal pollution is the prerequisite for soil management and ecological restoration. The result of this study is of important significance for choosing different interpolating and simulating methods to analyze soil heavy metal pollution based on different purposes.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)the National Natural Science Foundation of China(Key Program)(62136003)+2 种基金the National Natural Science Foundation of China(62394345)the Major Science and Technology Projects of Longmen Laboratory(LMZDXM202206)the Fundamental Research Funds for the Central Universities.
文摘Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52022053 and 51879153)the China National Postdoctoral Program for Innovative Talents(Grant No.BX2021172)。
文摘It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection.
文摘Risk quantification in grade is critical for mine design and planning.Grade uncertainty is assessed using multiple grade realizations,from geostatistical conditional simulations,which are effective to evaluate local or global uncertainty by honouring spatial correlation structures.The sequential Gaussian conditional simulation was used to assess uncertainty of grade estimates and illustrate simulated models in Sivas gold deposit,Turkey.In situ variability and risk quantification of the gold grade were assessed by probabilistic approach based on the sequential Gaussian simulations to yield a series of conditional maps characterized by equally probable spatial distribution of the gold grade for the study area.The simulation results were validated by a number of tests such as descriptive statistics,histogram,variogram and contour map reproductions.The case study demonstrates the efficiency of the method in assessing risk associated with geological and engineering variable such as the gold grade variability and distribution.The simulated models can be incorporated into exploration,exploitation and scheduling of the gold deposit.
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金Project(2018YFC1505401)supported by the National Key R&D Program of ChinaProject(41702310)supported by the National Natural Science Foundation of China+1 种基金Project(SKLGP2017K014)supported by the Foundation of State Key Laboratory of Geohazard Prevention and Geo-environment Protection,ChinaProject(2018JJ3644)supported by the Natural Science Foundation of Hunan Province,China
文摘We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatially-changed illumination,and uncertainties of block size in traditional method.The proposed method first partitions the image into square blocks that reflect local characteristics of the image.After image partitioning,each block is binarized using Otsu’s thresholding method.To minimize the influence of the block size and the boundary effect,we incorporate Monte-Carlo simulation into the binarization algorithm.Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map,which illustrates the probability of each pixel classified as foreground.By setting a probability threshold,and separating foreground and background of the source image,the final binary image can be obtained.The described method has been tested by benchmark tests.Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402004,2016YFC1402000,2018YFC1407003)the National Natural Science Foundation of China(Nos.U1706216,U1606402,41421005)
文摘As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis.By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute,China Meteorological Administration(CMASTI),typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen.We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons.In addition,the Yah Meng(YM)wind field model was introduced,and the sensitivity of the YM model to several parameters discussed.Using the YM wind field model,extreme wind speeds were extracted from the virtual typhoons.The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.
文摘The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.
文摘Based on the steady-state solution of finite-state birth and death process, the principle of line configuration for shared multi-channel system is analyzed. Call congestion ratio equation and channel utilization ratio equation are deduced, and visualized data analysis is presented. The analy-sis indicates that, calculated with the proposed equations, the overestimate for call congestion ratio and channel utilization ratio can be rectified, and thereby the cost of channels can be saved by 2000 in a small system.With MATLAB programming, line configuration methods are provided. In order to generally and intuitively show the dynamic running of the system, and to analyze,promote and improve it, the system is simulated using M/M/n/n/m queuing model and Monte-Carlo method. In addition, the simulation validates the correctness of the theoretical analysis and optimizing configuration method.
基金The authors wish to acknowledge the financial support from the Post-doctoral Foundation of Laboratory of Solid State Microstruc-ture of Nanjing University, and the National Natural Science Foun-dation of China. (No.10074028)
文摘A modified Monte-Carlo(MC) method to simulate the regular growth of binary eutectic alloys is presented. It is found that the growth rate has a linear dependence on the chemical potential difference between the solid and liquid; the relation between the lamellar spacing A and growth rate R accords well with the prediction of Jackson-Hunt(JH) theory unless the growth rate is very low.
基金supported by the National Natural Science Foundation of China(Grant No.12002246 and No.52178301)Knowledge Innovation Program of Wuhan(Grant No.2022010801020357)+2 种基金the Science Research Foundation of Wuhan Institute of Technology(Grant No.K2021030)2020 annual Open Fund of Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022)Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Grant No.2019KA03)。
文摘This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.
文摘Atomic growth process and structure of Amorphous Electroless Coating have been studied, using Monte-Carlo simulation method. The simulation results of amorphous Ni80P20 coating show that PDFs are in accordance with practical values. The migrations of adatoms in coating's growth are different from that of solidification of amorphous materials. In some cases, the migrated adatoms in the process of growth of amorphous coating are not enough to occupy all vacancies and traps, so the amorphous coating is micro-porous. The immovable probability k and the largest migration distance of adatoms, which lie on the electroless bath components, affect the PDF, volume density and microporosity remarkably.
基金supported by Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense(No. 2011RGET04)East China Institute of Technology, and National Natural Science Foundation of China (No. 41074078)
文摘Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.
基金supported by the National Natural Science Foundation of China(No.52022016)the Fundamental Research Funds for the Central Universities(No.2023CDJYXTD-004)the Graduate Research and Innovation Foundation of Chongqing(No.CYB22014)。
文摘The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power systems.In light of this issue,this paper presents a power system reliability evaluation method based on sequential Monte Carlo simulation(SMCS)to quantify system reliability considering multiple failure modes of components.First,a three-state component reliability model is established to explicitly describe the state transition process of the component subject to both aging failure and random failure modes.In this model,the impact of each failure mode is decoupled and characterized as the combination of two state duration variables,which are separately modeled using specific probability distributions.Subsequently,SMCS is used to integrate the three-state component reliability model for state transition sequence generation and system reliability evaluation.Therefore,various reliability metrics,including the probability of load curtailment(PLC),expected frequency of load curtailment(EFLC),and expected energy not supplied(EENS),can be estimated.To ensure the applicability of the proposed method,Hash table grouping and the maximum feasible load level judgment techniques are jointly adopted to enhance its computational performance.Case studies are conducted on different aging scenarios to illustrate and validate the effectiveness and practicality of the proposed method.
基金supported in part by the Higher Education Commission of Pakistan under PPCR programsupported by the National Magnetic Confinement Fusion Program under Grant No.2013GB104004Fundamental Research Fund for Chinese Central Universities
文摘For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient,Monte Carlo(MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem.Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.
基金National Natural Science Foundation of China(NSFC,Grant No.81273583)
文摘The epidermal growth factor receptor(EGFR)—tyrosine kinase inhibitors(TKIs) monotherapies have limited efficacy in the treatment of EGFR mutation-negative non-small cell lung cancers(NSCLCs). In the present study, we aimed to investigate the combined effect of erlotinib(ER) and cabozantinib(CAB) on NSCLC cell lines harboring wild-type EGFR and to optimize the dosage regimens using pharmacodynamic(PD) modeling and simulation. Therefore, we examined the combined effect of ER and CAB on cell viability, cloning, apoptosis induction, migration and growth dynamics in H1299 and A549 cells. PD modeling and simulation were also performed to quantitatively describe the H1299 cells growth dynamics and to optimize the dosage regimens as well. Our results showed that CAB effectively enhanced the sensitivity of both cell lines to ER. The PD models fitted the data well, and some important parameters were obtained. The exponential(λ_0) and linear(λ_1) growth rates of H1299 cells were 0.0241 h^(–1) and 360 cells?h^(–1), respectively. The Emax of ER and CAB was 0.0091 h^(–1) and 0.0085 h^(–1), and the EC50 was 0.812 μM and 1.16 μM, respectively. The synergistic effect observed in the experiments was further confirmed by the estimated combination index φ(1.37),(95% confidence interval: 1.24–1.50), obtained from PD modeling. Furthermore, the dosage regimens were optimized using simulations. In summary, both the experimental and modeling results demonstrated the synergistic interaction between ER and CAB in NSCLCs without EGFR mutations. Sequential combinations of ER and CAB provided an option for the therapy of the NSCLCs with wild-type EGFR, which would provide some references for preclinical study and translational research as well.
基金This study is partially supported by the Program of Outstanding Overseas Youth Chinese Scholar,the National Natural Science Foundation of China (No. 40528003)partially supported by USA National Science Foundation.
文摘On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results.
文摘Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions.
文摘In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not been addressed up to now. The crack in the beam at different locations and with different depths is considered as one group of damage, each as an individual imperfection. In addition, bearing immobility is considered as another type of problem in the beam. Mass, stiffness, damping and velocity of the oscillator are assumed to be random parameters. An improved perturbation technique is applied to reduce the simulation time. It was found that there is a maximum value of the variance of each uncertain parameter, in which the maximum reliability of the perturbation method can be achieved, and that this maximum value can be obtained by the Alpha-Hilber Monte-Carlo simulation method. The simulation results reveal that the mass and the velocity uncertainty cause high uncertainty in the deflection of the beam. Also, the pattern of the deflection is not affected by different random oscillator parameters, and as a result, the type of damage can be identified even with high uncertainty. Moreover, the deflection in the nodes around the mid-span of the beam provides the best information regarding the imperfections, and consequently leads to the best sensor locations in an actual experiment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11135002, 11075069, 91026021, 11075068, and 10975065)the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-k08)the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education
文摘The ionization time in sequential double ionization with an elliptically polarized laser pulse has been examined theo- retically using a semiclassical method. The significant discrepancy between the ionization time for parallel and anti-parallel electron emission is predicted numerically for the first time. The impact of the carrier envelope phase offset is also studied in this work.