A closed-vessel microwave digestion method is described for the rapid dissolution of environmental samples such as foods, soils and sediments. Depending on the sample type, 0.1-0.2 g sample was decomposed with HNO3/H2...A closed-vessel microwave digestion method is described for the rapid dissolution of environmental samples such as foods, soils and sediments. Depending on the sample type, 0.1-0.2 g sample was decomposed with HNO3/H2O2 or HNO3 / H2O2/HF acid mixture in a PTFE digestion vessel by using microwave heating for 2-3 min at 500W of microwave power. The solution, or to which 0.5 g of boric acid was added, was diluted to 25-50 ml and directly determined by sequential ICP-AES. The accuracy of the procedure was validated by the analysis of six standard reference materials for 10 elements. Ail results were in a good agreements with the certified values.展开更多
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent...Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.展开更多
Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge.In this study,we present a three-step sequential energy transfer process,which was constructed thr...Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge.In this study,we present a three-step sequential energy transfer process,which was constructed through host-vip interactions between a piperazine derivative(PPE-BPI)with aggregationinduced emission(AIE)and cucurbit[7]uril(CB[7])in water to serve as ideal energy donors.To achieve multi-step sequential energy transfer,we employ three distinct fluorescent dyes Eosin B(EsB),Sulforhodamine 101(SR101),and Cyanine 5(Cy5)as energy acceptors.The PPE-PBI-2CB[7]+EsB+SR101+Cy5 system demonstrates a highly efficient three-step sequential energy transfer mechanism,starting with PPEPBI-2CB[7]and transferring energy successively to EsB,SR101,and finally to Cy5,with remarkable energy transfer efficiencies.More interestingly,with the progressive transfer of energy in the multi-step energy transfer system,the generation efficiency of superoxide anion radical(O_(2)•-)increased gradually,which can be used as photocatalysts for selectively photooxidation of N-phenyltetrahydroisoquinoline in an aqueous medium with a high yield of 86%after irradiation for 18 h.This study offers a valuable investigation into the simulation of multi-step energy transfer processes and transformations in the natural world,paving the way for further research in the field.展开更多
Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency informatio...Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.展开更多
Objective:A risk-based sequential screening strategy,from questionnaire-based assessment to biomarker measurement and then to endoscopic examination,has the potential to enhance gastric cancer(GC)screening efficiency....Objective:A risk-based sequential screening strategy,from questionnaire-based assessment to biomarker measurement and then to endoscopic examination,has the potential to enhance gastric cancer(GC)screening efficiency.We aimed to evaluate the ability of five common stomach-specific serum biomarkers to further enrich high-risk individuals for GC in the questionnaire-identified high-risk population.Methods:This study was conducted based on a risk-based screening program in Ningxia Hui Autonomous Region,China.We first performed questionnaire assessment involving 23,381 individuals(7,042 outpatients and 16,339 individuals from the community),and those assessed as“high-risk”were then invited to participate in serological assays and endoscopic examinations.The serological biomarker model was derived based on logistic regression,with predictors selected via the Akaike information criterion.Model performance was evaluated by the area under the receiver operating characteristic curve(AUC).Results:A total of 2,011 participants were ultimately included for analysis.The final serological biomarker model had three predictors,comprising pepsinogenⅠ(PGI),pepsinogenⅠ/Ⅱratio(PGR),and anti-Helicobacter pylori immunoglobulin G(anti-H.pylori IgG)antibodies.This model generated an AUC of 0.733(95%confidence interval:0.655-0.812)and demonstrated the best discriminative ability compared with previously developed serological biomarker models.As the risk cut-off value of our model rose,the detection rate increased and the number of endoscopies needed to detect one case decreased.Conclusions:PGI,PGR,and anti-H.pylori Ig G could be jointly used to further enrich high-risk individuals for GC among those selected by questionnaire assessment,providing insight for the development of a multi-stage riskbased sequential strategy for GC screening.展开更多
Polycyclic compounds are widely found in natural products and drug molecules with important biological activities,which attracted the attention of many chemists.Phosphine-catalyzed nucleophilic addition is one of the ...Polycyclic compounds are widely found in natural products and drug molecules with important biological activities,which attracted the attention of many chemists.Phosphine-catalyzed nucleophilic addition is one of the most powerful tools for the construction of various cyclic compounds with the advantages of atom economy,mild reaction conditions and simplicity of operation.Allenolates,Morita−Baylis−Hillman(MBH)alcohols and their derivatives(MBHADs),electron-deficient olefins and alkynes are very efficient substrates in phosphine mediated annulations,which formed many phosphonium species such asβ-phosphonium enolates,β-phosphonium dienolates and vinyl phosphonium ylides as intermediates.This review describes the reactivities of these phosphonium zwitterions and summarizes the synthesis of polycycle compounds through phosphine-mediated intramolecular and intermolecular sequential annulations.Thus,a systematic summary of the research process based on the phosphine-mediated sequential annulations of allenolates,MBH alcohols and MBHADs,electron-deficient olefins and alkynes are presented in Chapters 2-6,respectively.展开更多
Background:Recent scholarly attention has increasingly focused on filial piety beliefs'impact on youth's psychological development.However,the mechanisms by which filial piety indirectly influences adolescent ...Background:Recent scholarly attention has increasingly focused on filial piety beliefs'impact on youth's psychological development.However,the mechanisms by which filial piety indirectly influences adolescent autonomy through depression and well-being remain underexplored.This study aimed to test a sequential mediation model among filial piety beliefs,depression,well-being,and autonomy in Taiwan region of China university students.Methods:A total of 566 Taiwan region of China undergraduate and graduate students,comprising 390 females and 176 males,and including 399 undergraduates and 167 graduate students,were recruited through convenience sampling.Data were collected via an online questionnaire.Validated instruments were employed,including the Filial Piety Scale(FPS),the Center for Epidemiological Studies Depression Scale(CES-D),the Chinese Well-being Inventory(CHI),and the Adolescent Autonomy Scale-Short Form(AAS-SF).Statistical analyses included group comparisons,correlation analyses,and structural equation modeling to examine the hypothesized relationships and mediation effects.Results:The results revealed that filial piety beliefs exerted a significant positive impact on adolescent autonomy,with depression and well-being serving as key mediators in this relationship.A sequential mediation effect was confirmed through structural equation modeling(β=0.052,95%CI[0.028,0.091]),with good model fit indices(x^(2)/df=4.25,RMSEA=0.076,CFI=0.968),supporting the hypothesized pathway from filial piety to autonomy via depression and well-being.In terms of demographic differences,male students showed significantly higher autonomy than females(p<0.001);students from single-parent families reported significantly higher depression levels than those from two-parent families(p<0.05);and graduate students exhibited significantly higher autonomy and well-being than undergraduates(p<0.05).Conclusions:These findings underscore not only the importance of filial piety beliefs for developing youth autonomy but also the critical role that mental health factors,such as depression and well-being,play in this process.The study concludes with a discussion of both theoretical implications and practical recommendations.These include strategies to foster reciprocal filial piety,strengthen parent-child relationships,and promote mental health.Additionally,the study outlines its limitations and proposes directions for future research.展开更多
Named data networking(NDNs)is an idealized deployment of information-centric networking(ICN)that has attracted attention from scientists and scholars worldwide.A distributed in-network caching scheme can efficiently r...Named data networking(NDNs)is an idealized deployment of information-centric networking(ICN)that has attracted attention from scientists and scholars worldwide.A distributed in-network caching scheme can efficiently realize load balancing.However,such a ubiquitous caching approach may cause problems including duplicate caching and low data diversity,thus reducing the caching efficiency of NDN routers.To mitigate these caching problems and improve the NDN caching efficiency,in this paper,a hierarchical-based sequential caching(HSC)scheme is proposed.In this scheme,the NDN routers in the data transmission path are divided into various levels and data with different request frequencies are cached in distinct router levels.The aim is to cache data with high request frequencies in the router that is closest to the content requester to increase the response probability of the nearby data,improve the data caching efficiency of named data networks,shorten the response time,and reduce cache redundancy.Simulation results show that this scheme can effectively improve the cache hit rate(CHR)and reduce the average request delay(ARD)and average route hop(ARH).展开更多
Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic...Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent.展开更多
A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium pho...A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium phosphate dihydrate and hydroxyapatite(DCPD and HA)was deposited,followed by a collagen/CaP layer.The morphological evolution,sequential degradation behaviour,and in vitro bio-properties of the coatings were investigated.The incorporation of collagen remarkably refined the morphology of the CaP,and a more aggregated nano-spherical morphology was observed with increasing collagen concentration.Sr could partially replace Ca in the CaP crystals.Collagen combined with CaP formed a relatively stable skeletal frame,which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue,as well as a more promising proliferation and differentiation ability of osteoblasts.A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.展开更多
文摘A closed-vessel microwave digestion method is described for the rapid dissolution of environmental samples such as foods, soils and sediments. Depending on the sample type, 0.1-0.2 g sample was decomposed with HNO3/H2O2 or HNO3 / H2O2/HF acid mixture in a PTFE digestion vessel by using microwave heating for 2-3 min at 500W of microwave power. The solution, or to which 0.5 g of boric acid was added, was diluted to 25-50 ml and directly determined by sequential ICP-AES. The accuracy of the procedure was validated by the analysis of six standard reference materials for 10 elements. Ail results were in a good agreements with the certified values.
基金supported by the National Natural Science Foundation of China(No.62203256)。
文摘Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.
基金the National Natural Science Foundation of China(No.52205210)the Natural Science Foundation of Shandong Province(Nos.ZR2020MB018,ZR2022QE033 and ZR2021QB049).
文摘Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge.In this study,we present a three-step sequential energy transfer process,which was constructed through host-vip interactions between a piperazine derivative(PPE-BPI)with aggregationinduced emission(AIE)and cucurbit[7]uril(CB[7])in water to serve as ideal energy donors.To achieve multi-step sequential energy transfer,we employ three distinct fluorescent dyes Eosin B(EsB),Sulforhodamine 101(SR101),and Cyanine 5(Cy5)as energy acceptors.The PPE-PBI-2CB[7]+EsB+SR101+Cy5 system demonstrates a highly efficient three-step sequential energy transfer mechanism,starting with PPEPBI-2CB[7]and transferring energy successively to EsB,SR101,and finally to Cy5,with remarkable energy transfer efficiencies.More interestingly,with the progressive transfer of energy in the multi-step energy transfer system,the generation efficiency of superoxide anion radical(O_(2)•-)increased gradually,which can be used as photocatalysts for selectively photooxidation of N-phenyltetrahydroisoquinoline in an aqueous medium with a high yield of 86%after irradiation for 18 h.This study offers a valuable investigation into the simulation of multi-step energy transfer processes and transformations in the natural world,paving the way for further research in the field.
基金supported by a grant from the Natural Science Foundation of Zhejiang Province under Grant LY21F010016.
文摘Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.
基金supported by the Tencent Charity Foundationthe Ningxia Hui Autonomous Region Key Research and Development Program(No.2021BEG 02025)+1 种基金the Flexible Introduction of Technological Innovation Teams of Ningxia Hui Autonomous Region(No.2021RXTDLX15)the Natural Science Foundation of China(No.82160644)。
文摘Objective:A risk-based sequential screening strategy,from questionnaire-based assessment to biomarker measurement and then to endoscopic examination,has the potential to enhance gastric cancer(GC)screening efficiency.We aimed to evaluate the ability of five common stomach-specific serum biomarkers to further enrich high-risk individuals for GC in the questionnaire-identified high-risk population.Methods:This study was conducted based on a risk-based screening program in Ningxia Hui Autonomous Region,China.We first performed questionnaire assessment involving 23,381 individuals(7,042 outpatients and 16,339 individuals from the community),and those assessed as“high-risk”were then invited to participate in serological assays and endoscopic examinations.The serological biomarker model was derived based on logistic regression,with predictors selected via the Akaike information criterion.Model performance was evaluated by the area under the receiver operating characteristic curve(AUC).Results:A total of 2,011 participants were ultimately included for analysis.The final serological biomarker model had three predictors,comprising pepsinogenⅠ(PGI),pepsinogenⅠ/Ⅱratio(PGR),and anti-Helicobacter pylori immunoglobulin G(anti-H.pylori IgG)antibodies.This model generated an AUC of 0.733(95%confidence interval:0.655-0.812)and demonstrated the best discriminative ability compared with previously developed serological biomarker models.As the risk cut-off value of our model rose,the detection rate increased and the number of endoscopies needed to detect one case decreased.Conclusions:PGI,PGR,and anti-H.pylori Ig G could be jointly used to further enrich high-risk individuals for GC among those selected by questionnaire assessment,providing insight for the development of a multi-stage riskbased sequential strategy for GC screening.
基金the National Natural Science Foundation of China(Nos.22171147 and 21871148)for the financial support。
文摘Polycyclic compounds are widely found in natural products and drug molecules with important biological activities,which attracted the attention of many chemists.Phosphine-catalyzed nucleophilic addition is one of the most powerful tools for the construction of various cyclic compounds with the advantages of atom economy,mild reaction conditions and simplicity of operation.Allenolates,Morita−Baylis−Hillman(MBH)alcohols and their derivatives(MBHADs),electron-deficient olefins and alkynes are very efficient substrates in phosphine mediated annulations,which formed many phosphonium species such asβ-phosphonium enolates,β-phosphonium dienolates and vinyl phosphonium ylides as intermediates.This review describes the reactivities of these phosphonium zwitterions and summarizes the synthesis of polycycle compounds through phosphine-mediated intramolecular and intermolecular sequential annulations.Thus,a systematic summary of the research process based on the phosphine-mediated sequential annulations of allenolates,MBH alcohols and MBHADs,electron-deficient olefins and alkynes are presented in Chapters 2-6,respectively.
文摘Background:Recent scholarly attention has increasingly focused on filial piety beliefs'impact on youth's psychological development.However,the mechanisms by which filial piety indirectly influences adolescent autonomy through depression and well-being remain underexplored.This study aimed to test a sequential mediation model among filial piety beliefs,depression,well-being,and autonomy in Taiwan region of China university students.Methods:A total of 566 Taiwan region of China undergraduate and graduate students,comprising 390 females and 176 males,and including 399 undergraduates and 167 graduate students,were recruited through convenience sampling.Data were collected via an online questionnaire.Validated instruments were employed,including the Filial Piety Scale(FPS),the Center for Epidemiological Studies Depression Scale(CES-D),the Chinese Well-being Inventory(CHI),and the Adolescent Autonomy Scale-Short Form(AAS-SF).Statistical analyses included group comparisons,correlation analyses,and structural equation modeling to examine the hypothesized relationships and mediation effects.Results:The results revealed that filial piety beliefs exerted a significant positive impact on adolescent autonomy,with depression and well-being serving as key mediators in this relationship.A sequential mediation effect was confirmed through structural equation modeling(β=0.052,95%CI[0.028,0.091]),with good model fit indices(x^(2)/df=4.25,RMSEA=0.076,CFI=0.968),supporting the hypothesized pathway from filial piety to autonomy via depression and well-being.In terms of demographic differences,male students showed significantly higher autonomy than females(p<0.001);students from single-parent families reported significantly higher depression levels than those from two-parent families(p<0.05);and graduate students exhibited significantly higher autonomy and well-being than undergraduates(p<0.05).Conclusions:These findings underscore not only the importance of filial piety beliefs for developing youth autonomy but also the critical role that mental health factors,such as depression and well-being,play in this process.The study concludes with a discussion of both theoretical implications and practical recommendations.These include strategies to foster reciprocal filial piety,strengthen parent-child relationships,and promote mental health.Additionally,the study outlines its limitations and proposes directions for future research.
基金supported in part by the National Natural Science Foundation of China under Grant 61972424 and 62372479in part by the High Value Intellectual Property Cultivation Project of Hubei Province,China,under grant D2021002094+1 种基金in part by JSPS KAKENHI under Grants JP16K00117 and JP19K20250in part by the Leading Initiative for Excellent Young Researchers(LEADER),MEXT,Japan,and KDDI Foundation.
文摘Named data networking(NDNs)is an idealized deployment of information-centric networking(ICN)that has attracted attention from scientists and scholars worldwide.A distributed in-network caching scheme can efficiently realize load balancing.However,such a ubiquitous caching approach may cause problems including duplicate caching and low data diversity,thus reducing the caching efficiency of NDN routers.To mitigate these caching problems and improve the NDN caching efficiency,in this paper,a hierarchical-based sequential caching(HSC)scheme is proposed.In this scheme,the NDN routers in the data transmission path are divided into various levels and data with different request frequencies are cached in distinct router levels.The aim is to cache data with high request frequencies in the router that is closest to the content requester to increase the response probability of the nearby data,improve the data caching efficiency of named data networks,shorten the response time,and reduce cache redundancy.Simulation results show that this scheme can effectively improve the cache hit rate(CHR)and reduce the average request delay(ARD)and average route hop(ARH).
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515010875)National Natural Science Foundation of China (12404480)+4 种基金Shenzhen Science and Technology Program (JCYJ20240813113238050, JCYJ20240813113306008)Education Department of Guangdong Province (2021KCXTD045)National Natural Science Foundation of China (12274303)the Shenzhen Key Laboratory of Applied Technologies of Super-Diamond and Functional Crystals (ZDSYS20230626091303007)Characteristic Innovation Foundation of Higher Education Institutions of Guangdong Province (2022KTSCX116)
文摘Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent.
基金support from Mobility Programme of the Sino-German Center(M-0056)National Natural Science Foundation of China(52101286)+2 种基金Natural Science Foundation of Liaoning Province(2022-YGJC-16)Fundamental Research Funds for the Central Universities(N2302017)Supported by Sichuan Science and Technology Program 2023ZYD0115Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(RC231178).
文摘A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium phosphate dihydrate and hydroxyapatite(DCPD and HA)was deposited,followed by a collagen/CaP layer.The morphological evolution,sequential degradation behaviour,and in vitro bio-properties of the coatings were investigated.The incorporation of collagen remarkably refined the morphology of the CaP,and a more aggregated nano-spherical morphology was observed with increasing collagen concentration.Sr could partially replace Ca in the CaP crystals.Collagen combined with CaP formed a relatively stable skeletal frame,which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue,as well as a more promising proliferation and differentiation ability of osteoblasts.A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.