Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly ...Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use.展开更多
Precision medicine is revolutionizing global healthcare by enabling personalized diagnostics,disease prediction,and tailored treatment strategies.While the integration of genomics and data science holds immense potent...Precision medicine is revolutionizing global healthcare by enabling personalized diagnostics,disease prediction,and tailored treatment strategies.While the integration of genomics and data science holds immense potential to optimize precision therapeutic outcomes,a critical challenge lies in translating gene sequencing data into actionable insights for in vitro diagnostics.This bottleneck is largely attributed to the limitations of edge-side intelligent processing and automation.Despite advancements in gene sequencing technologies and bioinformatics tools,the workflow from sample collection to diagnostic report generation remains fragmented,inefficient,and lacks of intelligence.To address these challenges,we introduce an embodied LLM NGS sequencer on the edge for real-time,on-site smart genetic diagnostics.This instrument integrates a streamlined and comprehensive pipeline with deep learning networks for primary data analysis,machine learning for secondary data processing,and a large language model(LLM)optimized for tertiary data interpretation.The LLM is enhanced through quantization and compression,facilitating deployment on FPGA/GPU to accelerate diagnostic workflows.Experimental results showcased the superior performance by achieving a 13.72%increase in throughput,a 99.50%Q30%,and enable smart diagnostic on the edge with the performance up to 75 tokens/s.This work enables immediate,on-site DNA analysis,hence dramatically improving precision medicine’s accessibility and efficiency,and significantly advances diagnostic accuracy,automation,establishing a robust platform for AI-driven personalized medicine and setting a new benchmark for the future of healthcare delivery.展开更多
Base-calling is an essential step in the analysis of third-generation genome data.Many previous hardware efforts aimed at enhancing processing in the workflow.However,an order of magnitude throughput gap still exists....Base-calling is an essential step in the analysis of third-generation genome data.Many previous hardware efforts aimed at enhancing processing in the workflow.However,an order of magnitude throughput gap still exists.In this paper,we propose FuHsi to improve the end-to-end throughput of the base-calling process.FuHsi is an in-cache accelerator that only introduces three components to the traditional CPUs in the sequencer.We propose FuHsi Cache,which offloads the bottleneck operations to cache arithmetic.Specifically,we accelerate beam search,string conversion,and MAC(multiply-accumulate)using algorithm/hardware co-design.We also introduce FuHsi APIs and FuHsi Controller to provide coarse-grained control for FuHsi Cache.Experimental results show that FuHsi can achieve 45.7x,113.1x,and 100x throughput per watt speedup compared with an NVIDIA Jetson baseline,an NVIDIA A100 GPU baseline,and the Helix accelerator,respectively.FuHsi can provide base-calling requests for up to 15 ONT sequencers simultaneously.展开更多
Using a pyrosequencing-based custom-made sequencer BIGIS-4, we sequenced a Gram-negative bacterium Glaciecola mesophila sp. nov. (Gmn) isolated from marine invertebrate specimens. We generated 152043 sequencing reads ...Using a pyrosequencing-based custom-made sequencer BIGIS-4, we sequenced a Gram-negative bacterium Glaciecola mesophila sp. nov. (Gmn) isolated from marine invertebrate specimens. We generated 152043 sequencing reads with a mean high-quality length of 406 bp, and assembled them using the BIGIS-4 post-processing module. No systematic low-quality data was detected beyond expected homopolymer-derived errors. The assembled Gmn genome is 5144318 bp in length and harbors 4303 annotated genes. A large number of metabolic genes correspond to various nutrients from surface marine invertebrates. Its abundant cold-tolerant and cellular signaling and related genes reveal a fundamental adaptation to low-temperature marine environment.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
Global brain ischemia and neurological deficit are consequences of cardiac arrest that lead to high mortality.Despite advancements in resuscitation science,our limited understanding of the cellular and molecular mecha...Global brain ischemia and neurological deficit are consequences of cardiac arrest that lead to high mortality.Despite advancements in resuscitation science,our limited understanding of the cellular and molecular mechanisms underlying post-cardiac arrest brain injury have hindered the development of effective neuroprotective strategies.Previous studies primarily focused on neuronal death,potentially overlooking the contributions of non-neuronal cells and intercellular communication to the pathophysiology of cardiac arrest-induced brain injury.To address these gaps,we hypothesized that single-cell transcriptomic analysis could uncover previously unidentified cellular subpopulations,altered cell communication networks,and novel molecular mechanisms involved in post-cardiac arrest brain injury.In this study,we performed a single-cell transcriptomic analysis of the hippocampus from pigs with ventricular fibrillation-induced cardiac arrest at 6 and 24 hours following the return of spontaneous circulation,and from sham control pigs.Sequencing results revealed changes in the proportions of different cell types,suggesting post-arrest disruption in the blood-brain barrier and infiltration of neutrophils.These results were validated through western blotting,quantitative reverse transcription-polymerase chain reaction,and immunofluorescence staining.We also identified and validated a unique subcluster of activated microglia with high expression of S100A8,which increased over time following cardiac arrest.This subcluster simultaneously exhibited significant M1/M2 polarization and expressed key functional genes related to chemokines and interleukins.Additionally,we revealed the post-cardiac arrest dysfunction of oligodendrocytes and the differentiation of oligodendrocyte precursor cells into oligodendrocytes.Cell communication analysis identified enhanced post-cardiac arrest communication between neutrophils and microglia that was mediated by neutrophil-derived resistin,driving pro-inflammatory microglial polarization.Our findings provide a comprehensive single-cell map of the post-cardiac arrest hippocampus,offering potential novel targets for neuroprotection and repair following cardiac arrest.展开更多
Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown ...Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury.While these models differ in their mechanisms,both ultimately result in retinal ganglion cell injury.With advancements in high-throughput technologies,techniques such as microarray analysis,RNA sequencing,and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury,revealing underlying molecular mechanisms.This review focuses on optic nerve crush and glaucoma models,elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics,transcriptome analysis,and chip analysis.Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury.Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration,such as Gal,Ucn,and Anxa2.In glaucoma models,high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure,identifying genes related to immune response,oxidative stress,and apoptosis.These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration.Additionally,CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration,offering new potential targets for neurorepair strategies in glaucoma.In summary,single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury,aiding in the identification of novel therapeutic targets.Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration.Furthermore,computational models and systems biology methods could help predict molecular pathways interactions,providing valuable guidance for clinical research on optic nerve regeneration and repair.展开更多
Macrophages in the brain barrier system include microglia in the brain parenchyma,border-associated macrophages at the brain’s borders,and recruited macrophages.They are responsible for neural development,maintenance...Macrophages in the brain barrier system include microglia in the brain parenchyma,border-associated macrophages at the brain’s borders,and recruited macrophages.They are responsible for neural development,maintenance of homeostasis,and orchestrating immune responses.With the rapid exploitation and development of new technologies,there is a deeper understanding of macrophages in the brain barrier system.Here we review the origin,development,important molecules,and functions of macrophages,mainly focusing on microglia and border-associated macrophages.We also highlight some advances in single-cell sequencing and significant cell markers.We anticipate that more advanced methods will emerge to study resident and recruited macrophages in the future,opening new horizons for neuroimmunology and related peripheral immune fields.展开更多
This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from...This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration.展开更多
Hodgkin lymphoma(HL)is a heterogenous lymphoproliferative disorder of B-cell origin and represents one of the most common malignancies in children and young adults.In addition to well-known underlying factors-such as ...Hodgkin lymphoma(HL)is a heterogenous lymphoproliferative disorder of B-cell origin and represents one of the most common malignancies in children and young adults.In addition to well-known underlying factors-such as Epstein-Barr virus infection-the familial aggregation demonstrated in large population studies suggested a genetic predisposition.First-degree relatives of patients with HL have an approximately threefold increased risk of developing the disease compared to the general population.These observations have recently prompted several whole-genome studies in affected families,identifying variants possibly implicated in lymphomagenesis,including alterations in DICER1(a member of the ribonuclease III family),POT1(protection of telomeres 1),KDR(kinase insert domain receptor),KLHDC8B(kelch domain-containing protein 8B),PAX5(paired box protein 5),GATA3(GATA binding protein 3),IRF7(interferon regulatory factor 7),EEF2KMT(eukaryotic elongation factor 2 lysine methyltransferase),and POLR1E(RNA polymerase I subunit E).In this article,we review current insights into the etiopathogenesis and risks of familial HL,and present case reports involving two sisters diagnosed with HL nearly 17 years apart.Recognizing the risk for first-degree relatives may potentially increase awareness of early symptoms among family members of HL patients,leading to earlier diagnosis and better outcomes.Conversely,understanding that the hereditary risk,though higher than in the general population,remains relatively low may provide reassurance for affected families.展开更多
Wu et al recently applied multi-region 16S rRNA sequencing to characterize the gastric cancer microbiome,demonstrating improved taxonomic resolution and detection sensitivity over conventional single-region approaches...Wu et al recently applied multi-region 16S rRNA sequencing to characterize the gastric cancer microbiome,demonstrating improved taxonomic resolution and detection sensitivity over conventional single-region approaches.While the study represents a valuable methodological step forward,it remains limited by singlecenter design,lack of quantitative calibration,and insufficient control for contamination and inter-laboratory variability.This editorial critically appraises these methodological gaps and emphasizes that future efforts must focus on harmonized,consensus-driven workflows to ensure reproducibility and clinical reliability.The translational potential of multi-region 16S lies in moving from descriptive microbial profiling to actionable clinical integration,particularly for recurrence prediction,treatment-response monitoring,and perioperative complication risk assessment.By addressing these methodological,economic,and ethical challenges,the field can advance toward evidence-based and clinically deployable microbiome-guided precision oncology.展开更多
Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types ...Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.展开更多
Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as s...Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as single embryo and easy rooting.However,Citron C-05 was found to be highly susceptible to root rot during cultivation,with the specific pathogens previously unknown.In this study,four candidate fungal species were isolated from Citron C-05 roots.Sequence analysis of ITS,EF-1a,RPB1,and RPB2 identified two Fusarium solani strains,Rr-2 and Rr-4,as the candidates causing root rot in Citron C-05.Resistance tests showed these two pathogens increased root damage rate from 10.30%to 35.69%in Citron C-05,sour orange(Citrus aurantium),sweet orange(Citrus sinensis)and pummelo(Citrus grandis).F.solani exhibited the weak pathogenicity towards trifoliate orange(Poncirus trifoliata).DAB staining revealed none of reddish-brown precipitation in the four susceptible citrus germplasm after infection with F.solani,while trifoliate orange exhibited significant H2O2 accumulation.Trypan blue staining indicated increased cell death in the four susceptible citrus germplasm following infection with these two pathogens but not in trifoliate orange.These findings provide a comprehensive understanding of citrus root rot and support future research on the mechanisms of root rot resistance in citrus.展开更多
Hyperpolarization of nuclear spins is crucial for advancing nuclear magnetic resonance and quantum information technologies,as nuclear spins typically exhibit extremely low polarization at room temperature due to thei...Hyperpolarization of nuclear spins is crucial for advancing nuclear magnetic resonance and quantum information technologies,as nuclear spins typically exhibit extremely low polarization at room temperature due to their small gyromagnetic ratios.A promising approach to achieving high nuclear spin polarization is transferring the polarization of electrons to nuclear spins.The nitrogen-vacancy(NV)center in diamond has emerged as a highly effective medium for this purpose,and various hyperpolarization protocols have been developed.Among these,the pulsed polarization(PulsePol)method has been extensively studied due to its robustness against static energy shifts of the electron spin.In this work,we present a novel polarization protocol and uncover a family of magic sequences for hyperpolarizing nuclear spins,with PulsePol emerging as a special case of our general approach.Notably,we demonstrate that some of these magic sequences exhibit significantly greater robustness compared to the PulsePol protocol in the presence of finite half𝜋pulse duration of the protocol,Rabi and detuning errors.This enhanced robustness positions our protocol as a more suitable candidate for hyper-polarizing nuclear spins species with large gyromagnetic ratios and also ensures better compatibility with high-efficiency readout techniques at high magnetic fields.Additionally,the generality of our protocol allows for its direct application to other solid-state quantum systems beyond the NV center.展开更多
Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in m...Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.展开更多
Objectives:Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia(Ph+/Ph-like ALL)constitute the majority of relapsed/refractory B-ALL(R/R B-ALL)...Objectives:Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia(Ph+/Ph-like ALL)constitute the majority of relapsed/refractory B-ALL(R/R B-ALL)cases,highlighting an urgent need to discover new therapeutic targets.This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays,with the goal of informing new clinical treatment strategies.Results:Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1(P2RX1)was associated with unfavorable outcomes.Specifically,patients with poor prognosis and low P2RX1 expression exhibited downregulation of genes involved in energy and calcium metabolism pathways,along with upregulation of genes governing key cellular processes such as cell proliferation(e.g.,MYC),cell cycle progression(e.g.,CCND2),and apoptosis inhibition(e.g.,DASP6).Cellular experiments demonstrated that SUP-B15 cells overexpressing P2RX1 displayed elevated intracellular levels of ATP,calcium,and glucose,together with enhanced glycolytic capacity,compared to empty vector controls.Treatment of SUP-B15 cells with dexamethasone(Dex),Imatinib,or their combination significantly suppressed proliferation and promoted apoptosis,which was accompanied by increases in intracellular ATP,calcium,and glucose.Moreover,exogenous ATP administration(a P2RX1 agonist)enhanced apoptosis and inhibited proliferation in control cells.Conversely,treatment with NF449(a P2RX1 inhibitor)increased proliferation in both P2RX1-overexpressing and control SUP-B15 cells.Conclusion:Our findings indicate that P2RX1 may exert this function through modulating energy metabolism and calcium homeostasis,resulting in elevated intracellular calcium levels.Sustained elevation of calcium promotes apoptosis,whereas exogenous ATP activates P2RX1,enhances calcium influx,and attenuates the suppression of apoptosis associated with P2RX1 underexpression,ultimately correlating with improved treatment response.展开更多
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the s...In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next- generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity.展开更多
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n...Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.展开更多
基金supported by the National key research and development plan(2016TFC1202700,2016YFC1200900)Beijing Municipal Science&Technology Commission project(grant numbers D151100002115003)Guangzhou Municipal Science&Technology Commission project(grant numbers 2015B2150820)
文摘Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use.
基金the Shenzhen Science and Technology Program under Grant KQTD20200820113051096,Grant JCYJ20220818100217038the Science and Technology Innovation Key R&D Program of Chongqing.
文摘Precision medicine is revolutionizing global healthcare by enabling personalized diagnostics,disease prediction,and tailored treatment strategies.While the integration of genomics and data science holds immense potential to optimize precision therapeutic outcomes,a critical challenge lies in translating gene sequencing data into actionable insights for in vitro diagnostics.This bottleneck is largely attributed to the limitations of edge-side intelligent processing and automation.Despite advancements in gene sequencing technologies and bioinformatics tools,the workflow from sample collection to diagnostic report generation remains fragmented,inefficient,and lacks of intelligence.To address these challenges,we introduce an embodied LLM NGS sequencer on the edge for real-time,on-site smart genetic diagnostics.This instrument integrates a streamlined and comprehensive pipeline with deep learning networks for primary data analysis,machine learning for secondary data processing,and a large language model(LLM)optimized for tertiary data interpretation.The LLM is enhanced through quantization and compression,facilitating deployment on FPGA/GPU to accelerate diagnostic workflows.Experimental results showcased the superior performance by achieving a 13.72%increase in throughput,a 99.50%Q30%,and enable smart diagnostic on the edge with the performance up to 75 tokens/s.This work enables immediate,on-site DNA analysis,hence dramatically improving precision medicine’s accessibility and efficiency,and significantly advances diagnostic accuracy,automation,establishing a robust platform for AI-driven personalized medicine and setting a new benchmark for the future of healthcare delivery.
基金supported in part by the National Key Research and Development Program of China under Grant Nos.2021YFB0300202 and 2022YFB4500403the National Natural Science Foundation of China under Grant Nos.62202454,62032023,and T2125013.
文摘Base-calling is an essential step in the analysis of third-generation genome data.Many previous hardware efforts aimed at enhancing processing in the workflow.However,an order of magnitude throughput gap still exists.In this paper,we propose FuHsi to improve the end-to-end throughput of the base-calling process.FuHsi is an in-cache accelerator that only introduces three components to the traditional CPUs in the sequencer.We propose FuHsi Cache,which offloads the bottleneck operations to cache arithmetic.Specifically,we accelerate beam search,string conversion,and MAC(multiply-accumulate)using algorithm/hardware co-design.We also introduce FuHsi APIs and FuHsi Controller to provide coarse-grained control for FuHsi Cache.Experimental results show that FuHsi can achieve 45.7x,113.1x,and 100x throughput per watt speedup compared with an NVIDIA Jetson baseline,an NVIDIA A100 GPU baseline,and the Helix accelerator,respectively.FuHsi can provide base-calling requests for up to 15 ONT sequencers simultaneously.
基金supported by the Chinese Academy of Sciences Scientific Research Equipment (Grant No. YZ200823)the Institutional Director's Initiative Fund awarded to Yu Jun, the National Natural Science Foundation of China (Grant Nos. 61007033, 30971610, and 40906097)the Institutional Initiative Fund awarded to Wang XuMin
文摘Using a pyrosequencing-based custom-made sequencer BIGIS-4, we sequenced a Gram-negative bacterium Glaciecola mesophila sp. nov. (Gmn) isolated from marine invertebrate specimens. We generated 152043 sequencing reads with a mean high-quality length of 406 bp, and assembled them using the BIGIS-4 post-processing module. No systematic low-quality data was detected beyond expected homopolymer-derived errors. The assembled Gmn genome is 5144318 bp in length and harbors 4303 annotated genes. A large number of metabolic genes correspond to various nutrients from surface marine invertebrates. Its abundant cold-tolerant and cellular signaling and related genes reveal a fundamental adaptation to low-temperature marine environment.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
基金supported by the National Science Foundation of China,Nos.82325031(to FX),82030059(to YC),82102290(to YG),U23A20485(to YC)Noncommunicable Chronic Diseases-National Science and Technology Major Project,No.2023ZD0505504(to FX),2023ZD0505500(to YC)the Key R&D Program of Shandong Province,No.2022ZLGX03(to YC).
文摘Global brain ischemia and neurological deficit are consequences of cardiac arrest that lead to high mortality.Despite advancements in resuscitation science,our limited understanding of the cellular and molecular mechanisms underlying post-cardiac arrest brain injury have hindered the development of effective neuroprotective strategies.Previous studies primarily focused on neuronal death,potentially overlooking the contributions of non-neuronal cells and intercellular communication to the pathophysiology of cardiac arrest-induced brain injury.To address these gaps,we hypothesized that single-cell transcriptomic analysis could uncover previously unidentified cellular subpopulations,altered cell communication networks,and novel molecular mechanisms involved in post-cardiac arrest brain injury.In this study,we performed a single-cell transcriptomic analysis of the hippocampus from pigs with ventricular fibrillation-induced cardiac arrest at 6 and 24 hours following the return of spontaneous circulation,and from sham control pigs.Sequencing results revealed changes in the proportions of different cell types,suggesting post-arrest disruption in the blood-brain barrier and infiltration of neutrophils.These results were validated through western blotting,quantitative reverse transcription-polymerase chain reaction,and immunofluorescence staining.We also identified and validated a unique subcluster of activated microglia with high expression of S100A8,which increased over time following cardiac arrest.This subcluster simultaneously exhibited significant M1/M2 polarization and expressed key functional genes related to chemokines and interleukins.Additionally,we revealed the post-cardiac arrest dysfunction of oligodendrocytes and the differentiation of oligodendrocyte precursor cells into oligodendrocytes.Cell communication analysis identified enhanced post-cardiac arrest communication between neutrophils and microglia that was mediated by neutrophil-derived resistin,driving pro-inflammatory microglial polarization.Our findings provide a comprehensive single-cell map of the post-cardiac arrest hippocampus,offering potential novel targets for neuroprotection and repair following cardiac arrest.
基金supported by the National Natural Science Foundation of China,Nos.82471123,82171053the Jilin Province Special Project for Talent in Medical and Health Sciences,No.2024WSXK-E01the Natural Science Foundation of Jilin Province,YDZJ202501ZYTS318(all to GL).
文摘Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury.While these models differ in their mechanisms,both ultimately result in retinal ganglion cell injury.With advancements in high-throughput technologies,techniques such as microarray analysis,RNA sequencing,and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury,revealing underlying molecular mechanisms.This review focuses on optic nerve crush and glaucoma models,elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics,transcriptome analysis,and chip analysis.Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury.Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration,such as Gal,Ucn,and Anxa2.In glaucoma models,high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure,identifying genes related to immune response,oxidative stress,and apoptosis.These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration.Additionally,CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration,offering new potential targets for neurorepair strategies in glaucoma.In summary,single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury,aiding in the identification of novel therapeutic targets.Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration.Furthermore,computational models and systems biology methods could help predict molecular pathways interactions,providing valuable guidance for clinical research on optic nerve regeneration and repair.
基金supported by Ministry of Science and Technology China Brain Initiative Grant,No.2022ZD0204702(to ZY)the National Natural Science Foundation of China,No.82371357(to LC)+2 种基金Foundation for Military Medicine,No.16QNP085(to ZY)Navy Medical University Basic Medical College“Yi Zhang”Basic Medical Talent Development and Support Program,Nos.JCYZRC-D-022(to TC)and JCYZRC-D-024(to HD)Science and Technology Innovation Special Fund of Shanghai Baoshan District,No.2023-E-05(to YW).
文摘Macrophages in the brain barrier system include microglia in the brain parenchyma,border-associated macrophages at the brain’s borders,and recruited macrophages.They are responsible for neural development,maintenance of homeostasis,and orchestrating immune responses.With the rapid exploitation and development of new technologies,there is a deeper understanding of macrophages in the brain barrier system.Here we review the origin,development,important molecules,and functions of macrophages,mainly focusing on microglia and border-associated macrophages.We also highlight some advances in single-cell sequencing and significant cell markers.We anticipate that more advanced methods will emerge to study resident and recruited macrophages in the future,opening new horizons for neuroimmunology and related peripheral immune fields.
基金supported by the National Natural Science Foundation of China(Grant No.32160172)the Key Science-Technology Project of Inner Mongolia(2023KYPT0010)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN03006)the 2023 Inner Mongolia Public Institution High-level Talent Introduction Scientific Research Support Project.
文摘This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration.
文摘Hodgkin lymphoma(HL)is a heterogenous lymphoproliferative disorder of B-cell origin and represents one of the most common malignancies in children and young adults.In addition to well-known underlying factors-such as Epstein-Barr virus infection-the familial aggregation demonstrated in large population studies suggested a genetic predisposition.First-degree relatives of patients with HL have an approximately threefold increased risk of developing the disease compared to the general population.These observations have recently prompted several whole-genome studies in affected families,identifying variants possibly implicated in lymphomagenesis,including alterations in DICER1(a member of the ribonuclease III family),POT1(protection of telomeres 1),KDR(kinase insert domain receptor),KLHDC8B(kelch domain-containing protein 8B),PAX5(paired box protein 5),GATA3(GATA binding protein 3),IRF7(interferon regulatory factor 7),EEF2KMT(eukaryotic elongation factor 2 lysine methyltransferase),and POLR1E(RNA polymerase I subunit E).In this article,we review current insights into the etiopathogenesis and risks of familial HL,and present case reports involving two sisters diagnosed with HL nearly 17 years apart.Recognizing the risk for first-degree relatives may potentially increase awareness of early symptoms among family members of HL patients,leading to earlier diagnosis and better outcomes.Conversely,understanding that the hereditary risk,though higher than in the general population,remains relatively low may provide reassurance for affected families.
文摘Wu et al recently applied multi-region 16S rRNA sequencing to characterize the gastric cancer microbiome,demonstrating improved taxonomic resolution and detection sensitivity over conventional single-region approaches.While the study represents a valuable methodological step forward,it remains limited by singlecenter design,lack of quantitative calibration,and insufficient control for contamination and inter-laboratory variability.This editorial critically appraises these methodological gaps and emphasizes that future efforts must focus on harmonized,consensus-driven workflows to ensure reproducibility and clinical reliability.The translational potential of multi-region 16S lies in moving from descriptive microbial profiling to actionable clinical integration,particularly for recurrence prediction,treatment-response monitoring,and perioperative complication risk assessment.By addressing these methodological,economic,and ethical challenges,the field can advance toward evidence-based and clinically deployable microbiome-guided precision oncology.
基金supported by the Jiangsu Province Traditional Chinese Medicine Technology Development Plan Project,Nos.MS2023113(to JC),MS2022090Young and Middle-aged Academic Leaders of Jiangsu Qing-Lan Project(to GL).
文摘Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.
基金supported by Joint Funds of the National Natural Science Foundation of China(Grant No.U21A20228).
文摘Root rot is a prevalent soil-borne fungal disease in citrus.Citron C-05(Citrus medica)stands out as a germplasm within Citrus spp.due to its complete resistance to citrus canker and favorable characteristics such as single embryo and easy rooting.However,Citron C-05 was found to be highly susceptible to root rot during cultivation,with the specific pathogens previously unknown.In this study,four candidate fungal species were isolated from Citron C-05 roots.Sequence analysis of ITS,EF-1a,RPB1,and RPB2 identified two Fusarium solani strains,Rr-2 and Rr-4,as the candidates causing root rot in Citron C-05.Resistance tests showed these two pathogens increased root damage rate from 10.30%to 35.69%in Citron C-05,sour orange(Citrus aurantium),sweet orange(Citrus sinensis)and pummelo(Citrus grandis).F.solani exhibited the weak pathogenicity towards trifoliate orange(Poncirus trifoliata).DAB staining revealed none of reddish-brown precipitation in the four susceptible citrus germplasm after infection with F.solani,while trifoliate orange exhibited significant H2O2 accumulation.Trypan blue staining indicated increased cell death in the four susceptible citrus germplasm following infection with these two pathogens but not in trifoliate orange.These findings provide a comprehensive understanding of citrus root rot and support future research on the mechanisms of root rot resistance in citrus.
基金supported by the National Natural Science Foundation of China (Grant Nos.12475012,62461160263 for P.W.,and 62276171 for H.L.)Quantum Science and Technology-National Science and Technology Major Project of China (Project No.2023ZD0300600 for P.W.)+3 种基金Guangdong Provincial Quantum Science Strategic Initiative (Grant Nos.GDZX240-3009 and GDZX2303005 for P.W.)Guangdong Basic and Applied Basic Research Foundation (Grant No.2024-A1515011938 for H.L.)Shenzhen Fundamental ResearchGeneral Project (Grant No.JCYJ20240813141503005 for H.L.)the Talents Introduction Foundation of Beijing Normal University (Grant No.310432106 for P.W.)。
文摘Hyperpolarization of nuclear spins is crucial for advancing nuclear magnetic resonance and quantum information technologies,as nuclear spins typically exhibit extremely low polarization at room temperature due to their small gyromagnetic ratios.A promising approach to achieving high nuclear spin polarization is transferring the polarization of electrons to nuclear spins.The nitrogen-vacancy(NV)center in diamond has emerged as a highly effective medium for this purpose,and various hyperpolarization protocols have been developed.Among these,the pulsed polarization(PulsePol)method has been extensively studied due to its robustness against static energy shifts of the electron spin.In this work,we present a novel polarization protocol and uncover a family of magic sequences for hyperpolarizing nuclear spins,with PulsePol emerging as a special case of our general approach.Notably,we demonstrate that some of these magic sequences exhibit significantly greater robustness compared to the PulsePol protocol in the presence of finite half𝜋pulse duration of the protocol,Rabi and detuning errors.This enhanced robustness positions our protocol as a more suitable candidate for hyper-polarizing nuclear spins species with large gyromagnetic ratios and also ensures better compatibility with high-efficiency readout techniques at high magnetic fields.Additionally,the generality of our protocol allows for its direct application to other solid-state quantum systems beyond the NV center.
基金supported by the National Science Foundation of China(No.82405004,82474253)the Natural Science Foundation postdoctoral project of Chongqing(CSTB2022NSCQ-BHX0709)+2 种基金Chongqing Wanzhou District doctoral“through train”scientific research project(wzstc-20220124)Natural Science Foundation of Chongqing,China(No.Cstc2021jcyj-msxmX0996)Chongqing Wanzhou District Science and Health Joint Medical Research Project(wzstc-kw2023032)。
文摘Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.
基金supported by Guangdong Province Basic and Applied Basic Research Fund Project(2023A1515220104)Open Fund of Key Laboratory of Hepatoaplenic Surgery,Ministry of Education(Award Number:GPKF202407).
文摘Objectives:Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia(Ph+/Ph-like ALL)constitute the majority of relapsed/refractory B-ALL(R/R B-ALL)cases,highlighting an urgent need to discover new therapeutic targets.This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays,with the goal of informing new clinical treatment strategies.Results:Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1(P2RX1)was associated with unfavorable outcomes.Specifically,patients with poor prognosis and low P2RX1 expression exhibited downregulation of genes involved in energy and calcium metabolism pathways,along with upregulation of genes governing key cellular processes such as cell proliferation(e.g.,MYC),cell cycle progression(e.g.,CCND2),and apoptosis inhibition(e.g.,DASP6).Cellular experiments demonstrated that SUP-B15 cells overexpressing P2RX1 displayed elevated intracellular levels of ATP,calcium,and glucose,together with enhanced glycolytic capacity,compared to empty vector controls.Treatment of SUP-B15 cells with dexamethasone(Dex),Imatinib,or their combination significantly suppressed proliferation and promoted apoptosis,which was accompanied by increases in intracellular ATP,calcium,and glucose.Moreover,exogenous ATP administration(a P2RX1 agonist)enhanced apoptosis and inhibited proliferation in control cells.Conversely,treatment with NF449(a P2RX1 inhibitor)increased proliferation in both P2RX1-overexpressing and control SUP-B15 cells.Conclusion:Our findings indicate that P2RX1 may exert this function through modulating energy metabolism and calcium homeostasis,resulting in elevated intracellular calcium levels.Sustained elevation of calcium promotes apoptosis,whereas exogenous ATP activates P2RX1,enhances calcium influx,and attenuates the suppression of apoptosis associated with P2RX1 underexpression,ultimately correlating with improved treatment response.
基金funded by the University of Engineering and Technology,Lahore,Pakistan (Grant No. Estab/DBS/411)National Science Foundation(Grant No. 0915444)
文摘In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next- generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity.
基金supported by the National Natural Science Foundation of China,Nos.82071307(to HL),82271362(to HL),82171294(to JW),82371303(to JW),and 82301460(to PX)the Natural Science Foundation of Jiangsu Province,No.BK20211552(to HL)+1 种基金Suzhou Medical Technology Innovation Project-Clinical Frontier,No.SKY2022002(to ZY)the Science and Education Foundation for Health of Suzhou for Youth,No.KJXW2023001(to XL)。
文摘Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.