Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run...The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.展开更多
The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these...The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these fluctuations,a passive control strategy centered around a multi-stable nonlinear energy sink(MNES)is proposed.First,models for electromagnetic torque,gear nonlinear meshing torque,and misalignment torque are established.Building upon this foundation,an electromechanical coupling dynamic model of the electric drive system is formulated.Sensitivity analysis is conducted to determine the sensitive nodes of each mode and to provide guidance for the installation of the MNES.The structure of the MNES is introduced,and an electromechanical coupling dynamic model with the MNES is established.Based on this model,the influence of the misaligned angle on the electromechanical coupling characteristics is analyzed.In addition,the vibration suppression performance of the MNES is studied under both speed and uniform speed conditions.Finally,experimental testing is conducted to verify the vibration suppression performance of the MNES.The results indicate that misalignment triggers the emergence of its characteristic frequencies and associated sidebands.Meanwhile,the MNES effectively mitigates the torsional vibrations in the coupled system,demonstrating suppression rates of 52.69%in simulations and 63.3%in experiments.展开更多
Cells live in a multiphysics-coupled microenvironment in vivo,in which electric fields(EFs)and mechanical cues are the most essential induction signals.The regulatory effects of EFs and stiffness on cells have been in...Cells live in a multiphysics-coupled microenvironment in vivo,in which electric fields(EFs)and mechanical cues are the most essential induction signals.The regulatory effects of EFs and stiffness on cells have been independently demonstrated.However,how cells respond to electromechanical coupling cues remains mysterious.In this study,an electro-stiffness-coupled chip system was designed and fabricated,freely integrating and precisely controlling EF strength and the mechanical stiffness applied to cells across the physiological spectrum.Utilizing the innovative bioreactor,it was observed that electromechanical coupling stimulations can shape cancer cell morphology and cytoskeleton into a unique anteroposterior polarization state and orient cancer cell migration in a voltage-dependent manner through cytoskeleton-associated mechanisms.Moreover,the mechanical stiffness regulated cancer cell susceptibility to EFs,and the orientation effect of EFs on cells required a stiffness threshold.Furthermore,transforming growth factor-β1 suppressed the orientation of cancer cells induced by electromechanical coupling signals and showed a splitting effect on the directionality and velocity of cancer cell migration,indicating a comprehensive cross-talk of biochemical–electromechanical signals.Together with the dual-physical bioreactor we designed,these findings provide a robust and convenient platform for exploring cellular responses to electro-stiffness coupling signals,reveal the biophysical mechanisms of cell polarization and migration from the perspective of electromechanical coupling,and lay a promising foundation for biophysical-based cell manipulation and therapeutic interventions.展开更多
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec...In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.展开更多
Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero...Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero-phase synchronization of the machine is non-stationary and it-phase synchronization is stable. Under half-forcible synchronization condition in which only one motor is controlled being synchronous to another, only lag synchronization near zero-phase synchronization can be realized. Both of the characteristics have never been revealed with classical theory quantitatively. The problem is solved by means of establishing an electromechanical coupling mathematical model of the system and numerical analysis of the starting processes.展开更多
Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design para...Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments.展开更多
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of t...The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results.展开更多
Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electro...Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.展开更多
Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (sp3) phases was discussed on the local modification with a conductive atomic forc...Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (sp3) phases was discussed on the local modification with a conductive atomic force microscope (C-APM). Especially, a topographic change was observed when a direct current (DC) bias-voltage was applied to the DLC film. Experimental results show that a nanoscale pit on DLC surface was formed when applying a positive 25 V on DLC film. According to the interacting force between CoCr-coated microelectronic scanning probe (MESP) tip and DLC surface, as well as the Sondheimer oscillation theory, the 'scalewing effect' of the pit was explained. Electromechanical coupling on DLC film suggested that the depth of pits increased with an increase of load applied to surface when the cantilever-deflected signal was less than a certain threshold voltage.展开更多
With the development of electronic equipment to high accuracy, high density, high frequency, and atrocious ser- vice environment, the functional surface in this type of equipment has increasingly serious problems,
From aspect of electromechanical coupling,the probable conditions that cause rolling mill chatter to lead to periodic thickness error or bring about light and shade streaks on the surface of steel strip were studied. ...From aspect of electromechanical coupling,the probable conditions that cause rolling mill chatter to lead to periodic thickness error or bring about light and shade streaks on the surface of steel strip were studied. CM04 temper mill, a typical complicated electromechanical system, was taken as object of study to explore electromechanical coupling facts in complicated electromechanical system. Four modes of electromechanical coupling and their acting principle and law were expounded. Some suggests and measures were put forward for designing of a class of complicated electromechanical system.展开更多
We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement an...We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.展开更多
Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is a...Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is also an important tool to guide the piezoelectric damping design of linear structures.Advanced aircraft often fly in maneuvers,and the variable working conditions induce drastic changes in the load level on structures.Geometric and contact nonlinearities of thin-walled structures and joint structures are often activated.To achieve a good vibration reduction effect covering all working conditions,one cannot directly use linear electromechanical coupling theory to instruct the piezoelectric damping design for nonlinear structures.Therefore,this paper defines the Nonlinear Modal Electromechanical Coupling Factor(NMEMCF)and proposes the corresponding numerical method for the first time to quantitatively evaluate the electromechanical coupling capability of nonlinear piezoelectric structures.Three candidate definitions of the NMEMCF are given,including two frequency definitions and one energy definition.The energy definition is the most promising one.It is not only applicable to both conservative and dissipative nonlinear structures but also compatible with the linear MEMCF.In addition,based on the energy formula,the NMEMCF can be obtained by only performing one nonlinear modal analysis in the open-circuit state.The analytical findings and the numerical tool are validated against two piezoelectric structures with different types of nonlinearities.A strong correlation among the NMEMCF,geometric parameters,and energy dissipation is observed.The results confirm that the proposed NMEMCF captures the physics of the electromechanical coupling phenomenon associated with nonlinear piezoelectric structures and can be used as an essential design indicator of piezoelectric damping,especially for variable working conditions.展开更多
The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical mode...The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment.展开更多
Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of ...Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure.展开更多
The article entitled Effect of transcatheter aortic valve replacement on P-wave duration, P-wave dispersion and left atrial size by Dursun, et al. has contributed to our knowledge regarding the positive effects of tra...The article entitled Effect of transcatheter aortic valve replacement on P-wave duration, P-wave dispersion and left atrial size by Dursun, et al. has contributed to our knowledge regarding the positive effects of transcatheter aortic valve replacement (TAVR) procedure on atrial electrical remodeling. In this study, TAVR procedure led to a decrease on P-wave duration and P-wave dinner,inn展开更多
A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the...A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.展开更多
In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s ...In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s motion with different stiffness of energy-absorbing components, a rigid-flexible coupling model of the cabin door actuation system was established in LMS. Virtual. Motion. In Amesim, a control model of the motor was created. Through the Motion-Amesim co-simulation module, the dynamic module of the system was combined with the motor control module to complete the electromechanical coupling simulation and analyze the results. .展开更多
In subsynchronous resonance (SSR) systems where shaft systems of turbine-generator sets are coupling with electric networks, Hopf bifurcation will occur under certain conditions. Some singularity phenomena may generat...In subsynchronous resonance (SSR) systems where shaft systems of turbine-generator sets are coupling with electric networks, Hopf bifurcation will occur under certain conditions. Some singularity phenomena may generate when the hysteretic behavior of couplings in the shaft systems is considered. In this paper, the intrinsic multiple-scale harmonic balance method is extended to the nonlinear autonomous system with the non-analytic property, and the dynamic complexities of the system near the Hopf bifurcation point are analyzed.展开更多
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金supported by Sichuan Science and Technology Program(Grant No.2020YFH0080)the National Natural Science Foundation of China(Grant No.51475386)the National Basic Research Project of China(973 Program,Grant No.2015CB654801).
文摘The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.
基金Project supported by the National Natural Science Foundation of China(Nos.52075084 and 52475094)the Fundamental Research Funds for the Central Universities of China(No.N2303005)。
文摘The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these fluctuations,a passive control strategy centered around a multi-stable nonlinear energy sink(MNES)is proposed.First,models for electromagnetic torque,gear nonlinear meshing torque,and misalignment torque are established.Building upon this foundation,an electromechanical coupling dynamic model of the electric drive system is formulated.Sensitivity analysis is conducted to determine the sensitive nodes of each mode and to provide guidance for the installation of the MNES.The structure of the MNES is introduced,and an electromechanical coupling dynamic model with the MNES is established.Based on this model,the influence of the misaligned angle on the electromechanical coupling characteristics is analyzed.In addition,the vibration suppression performance of the MNES is studied under both speed and uniform speed conditions.Finally,experimental testing is conducted to verify the vibration suppression performance of the MNES.The results indicate that misalignment triggers the emergence of its characteristic frequencies and associated sidebands.Meanwhile,the MNES effectively mitigates the torsional vibrations in the coupled system,demonstrating suppression rates of 52.69%in simulations and 63.3%in experiments.
基金Beijing Academy of Science and Technology (BJAST) supported this worksupported by the Financial Program of BJAST (Nos. 24CE-BGS-02, 24CA010-01, and 23CB106)
文摘Cells live in a multiphysics-coupled microenvironment in vivo,in which electric fields(EFs)and mechanical cues are the most essential induction signals.The regulatory effects of EFs and stiffness on cells have been independently demonstrated.However,how cells respond to electromechanical coupling cues remains mysterious.In this study,an electro-stiffness-coupled chip system was designed and fabricated,freely integrating and precisely controlling EF strength and the mechanical stiffness applied to cells across the physiological spectrum.Utilizing the innovative bioreactor,it was observed that electromechanical coupling stimulations can shape cancer cell morphology and cytoskeleton into a unique anteroposterior polarization state and orient cancer cell migration in a voltage-dependent manner through cytoskeleton-associated mechanisms.Moreover,the mechanical stiffness regulated cancer cell susceptibility to EFs,and the orientation effect of EFs on cells required a stiffness threshold.Furthermore,transforming growth factor-β1 suppressed the orientation of cancer cells induced by electromechanical coupling signals and showed a splitting effect on the directionality and velocity of cancer cell migration,indicating a comprehensive cross-talk of biochemical–electromechanical signals.Together with the dual-physical bioreactor we designed,these findings provide a robust and convenient platform for exploring cellular responses to electro-stiffness coupling signals,reveal the biophysical mechanisms of cell polarization and migration from the perspective of electromechanical coupling,and lay a promising foundation for biophysical-based cell manipulation and therapeutic interventions.
基金Supported by National Science&Technology Pillar Program of China during the 12th Five-Year Plan Period(Product Quality Optimization of Precision Strip and R&D for Key Equipment,Grant No.2015BAF30B01)
文摘In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.
基金This project is supported by National Natural Science Foundation of China (No.59875010)
文摘Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero-phase synchronization of the machine is non-stationary and it-phase synchronization is stable. Under half-forcible synchronization condition in which only one motor is controlled being synchronous to another, only lag synchronization near zero-phase synchronization can be realized. Both of the characteristics have never been revealed with classical theory quantitatively. The problem is solved by means of establishing an electromechanical coupling mathematical model of the system and numerical analysis of the starting processes.
基金supported by National Natural Science Foundation of China (Grant No. 50675095)
文摘Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results.
基金supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)
文摘Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.
基金The project supported by the Special Fund and Open Foundation of Micro/Nano Technology Center of Jiangsu University (No. 1291400001)
文摘Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (sp3) phases was discussed on the local modification with a conductive atomic force microscope (C-APM). Especially, a topographic change was observed when a direct current (DC) bias-voltage was applied to the DLC film. Experimental results show that a nanoscale pit on DLC surface was formed when applying a positive 25 V on DLC film. According to the interacting force between CoCr-coated microelectronic scanning probe (MESP) tip and DLC surface, as well as the Sondheimer oscillation theory, the 'scalewing effect' of the pit was explained. Electromechanical coupling on DLC film suggested that the depth of pits increased with an increase of load applied to surface when the cantilever-deflected signal was less than a certain threshold voltage.
文摘With the development of electronic equipment to high accuracy, high density, high frequency, and atrocious ser- vice environment, the functional surface in this type of equipment has increasingly serious problems,
文摘From aspect of electromechanical coupling,the probable conditions that cause rolling mill chatter to lead to periodic thickness error or bring about light and shade streaks on the surface of steel strip were studied. CM04 temper mill, a typical complicated electromechanical system, was taken as object of study to explore electromechanical coupling facts in complicated electromechanical system. Four modes of electromechanical coupling and their acting principle and law were expounded. Some suggests and measures were put forward for designing of a class of complicated electromechanical system.
基金the support under A*STAR SERC grant (132-183-0025)
文摘We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.
基金funded by Major Projects of Aero-Engines and Gas Turbines(J2019-Ⅳ-0023-0091 and J2019-Ⅳ-0005-0073)Aeronautical Science Foundation of China(2019ZB051002)+1 种基金China Postdoctoral Science Foundation(2021M700326)Advanced Jet Propulsion Creativity Center(Projects HKCX2020-02-013,HKCX2020-02-016 and HKCX2022-01009)。
文摘Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is also an important tool to guide the piezoelectric damping design of linear structures.Advanced aircraft often fly in maneuvers,and the variable working conditions induce drastic changes in the load level on structures.Geometric and contact nonlinearities of thin-walled structures and joint structures are often activated.To achieve a good vibration reduction effect covering all working conditions,one cannot directly use linear electromechanical coupling theory to instruct the piezoelectric damping design for nonlinear structures.Therefore,this paper defines the Nonlinear Modal Electromechanical Coupling Factor(NMEMCF)and proposes the corresponding numerical method for the first time to quantitatively evaluate the electromechanical coupling capability of nonlinear piezoelectric structures.Three candidate definitions of the NMEMCF are given,including two frequency definitions and one energy definition.The energy definition is the most promising one.It is not only applicable to both conservative and dissipative nonlinear structures but also compatible with the linear MEMCF.In addition,based on the energy formula,the NMEMCF can be obtained by only performing one nonlinear modal analysis in the open-circuit state.The analytical findings and the numerical tool are validated against two piezoelectric structures with different types of nonlinearities.A strong correlation among the NMEMCF,geometric parameters,and energy dissipation is observed.The results confirm that the proposed NMEMCF captures the physics of the electromechanical coupling phenomenon associated with nonlinear piezoelectric structures and can be used as an essential design indicator of piezoelectric damping,especially for variable working conditions.
文摘The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment.
基金the National Natural Science Foundation of China(10072005)Beijing Educational Committee(99LG-11)Beijing Natural Science(3002002)Foundation
文摘Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure.
文摘The article entitled Effect of transcatheter aortic valve replacement on P-wave duration, P-wave dispersion and left atrial size by Dursun, et al. has contributed to our knowledge regarding the positive effects of transcatheter aortic valve replacement (TAVR) procedure on atrial electrical remodeling. In this study, TAVR procedure led to a decrease on P-wave duration and P-wave dinner,inn
文摘A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.
文摘In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s motion with different stiffness of energy-absorbing components, a rigid-flexible coupling model of the cabin door actuation system was established in LMS. Virtual. Motion. In Amesim, a control model of the motor was created. Through the Motion-Amesim co-simulation module, the dynamic module of the system was combined with the motor control module to complete the electromechanical coupling simulation and analyze the results. .
基金The project supported by the National Natural Science Foundation of China(as a key project)the State Education Committee Pre-research Foundation.
文摘In subsynchronous resonance (SSR) systems where shaft systems of turbine-generator sets are coupling with electric networks, Hopf bifurcation will occur under certain conditions. Some singularity phenomena may generate when the hysteretic behavior of couplings in the shaft systems is considered. In this paper, the intrinsic multiple-scale harmonic balance method is extended to the nonlinear autonomous system with the non-analytic property, and the dynamic complexities of the system near the Hopf bifurcation point are analyzed.