期刊文献+
共找到1,904篇文章
< 1 2 96 >
每页显示 20 50 100
A Study of Multi-sensor Data Fusion System Based on MAS for Nutrient Solution Measurement
1
作者 Feng Chen Dafu Yang +1 位作者 Bing Wang Xianhu Tan 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期264-267,共4页
For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system ... For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF. 展开更多
关键词 multi-sensor data fusion multi-agent system nutrient solution reliability diagnosis.
在线阅读 下载PDF
STUDY ON THE COAL-ROCK INTERFACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE 被引量:7
2
作者 Ren FangYang ZhaojianXiong ShiboResearch Institute of Mechano-Electronic Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期321-324,共4页
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data... The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones. 展开更多
关键词 Coal-rock interface recognition (CIR) data fusion (DF) MULTI-sensor
在线阅读 下载PDF
Application of Multiple Sensor Data Fusion for the Analysis of Human Dynamic Behavior in Space: Assessment and Evaluation of Mobility-Related Functional Impairments
3
作者 Thompson Sarkodie-Gyan Huiying Yu +2 位作者 Melaku Bogale Noe Vargas Hernandez Miguel Pirela-Cruz 《Journal of Biomedical Science and Engineering》 2017年第4期182-203,共22页
The authors have applied a systems analysis approach to describe the musculoskeletal system as consisting of a stack of superimposed kinematic hier-archical segments in which each lower segment tends to transfer its m... The authors have applied a systems analysis approach to describe the musculoskeletal system as consisting of a stack of superimposed kinematic hier-archical segments in which each lower segment tends to transfer its motion to the other superimposed segments. This segmental chain enables the derivation of both conscious perception and sensory control of action in space. This applied systems analysis approach involves the measurements of the complex motor behavior in order to elucidate the fusion of multiple sensor data for the reliable and efficient acquisition of the kinetic, kinematics and electromyographic data of the human spatial behavior. The acquired kinematic and related kinetic signals represent attributive features of the internal recon-struction of the physical links between the superimposed body segments. In-deed, this reconstruction of the physical links was established as a result of the fusion of the multiple sensor data. Furthermore, this acquired kinematics, kinetics and electromyographic data provided detailed means to record, annotate, process, transmit, and display pertinent information derived from the musculoskeletal system to quantify and differentiate between subjects with mobility-related disabilities and able-bodied subjects, and enabled an inference into the active neural processes underlying balance reactions. To gain insight into the basis for this long-term dependence, the authors have applied the fusion of multiple sensor data to investigate the effects of Cerebral Palsy, Multiple Sclerosis and Diabetic Neuropathy conditions, on biomechanical/neurophysiological changes that may alter the ability of the human loco-motor system to generate ambulation, balance and posture. 展开更多
关键词 Superimposed BODY SEGMENTS Transfer FUNCTIONS MULTIPLE sensor data fusion MUSCULOSKELETAL System
暂未订购
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
4
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
Consistent fusion for distributed multi-rate multi-sensor linear systems with unknown correlated measurement noises
5
作者 Peng WANG Hongbing JI +1 位作者 Yongquan ZHANG Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第7期389-407,共19页
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult... This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy. 展开更多
关键词 Distributed multi-rate multisensor system sensor data fusion Correlated measurement noise Equivalent measurement Consistent method
原文传递
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
6
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal MULTI-sensor data level fusion correlation function weighted value
在线阅读 下载PDF
Sensor Registration Based on Neural Network in Data Fusion
7
作者 窦丽华 张苗 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期31-35,共5页
The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here... The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here the measurements from radar are transformed from the polar coordinate system to the Cartesian coordinate through a BP neural network. With this approach, the systematic errors are removed as well as the coordinate is transformed. The efficiency of this method is demonstrated by simulation, and the result show that this approach could remove the systematic errors effectively and the DAR are closer to real position than DBR. 展开更多
关键词 data fusion: sensor registration BP neural network
在线阅读 下载PDF
Data Fusion and Sensors Model
8
作者 金峰 《High Technology Letters》 EI CAS 2000年第1期20-23,共4页
In this paper, we take the model of Laser range finder based on synchronized scanner as example, show how to use data fusion method in the process of sensor model designing to get more robust output. Also we provide o... In this paper, we take the model of Laser range finder based on synchronized scanner as example, show how to use data fusion method in the process of sensor model designing to get more robust output. Also we provide our idea on the relation of sensor model, data fusion and system structure, and in the paper, there is a solution that transform the parameter space to get linear model for Kalman filter. 展开更多
关键词 sensor MODEL data fusion laser RANGE FINDER based on synchronized SCANNER linear
在线阅读 下载PDF
AN INFORMATION FUSION METHOD FOR SENSOR DATA RECTIFICATION
9
作者 Zhang Zhen Xu Lizhong +3 位作者 Harry HuaLi Shi Aiye Han Hua Wang Huibin 《Journal of Electronics(China)》 2012年第1期148-157,共10页
In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of wa... In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly. 展开更多
关键词 Information fusion sensor data rectification Back Propagation (BP) neural network Field-Programmable Gate Array (FPGA)
在线阅读 下载PDF
Sensor Placement for Sensing Coverage and Data Precision in Wireless Sensor Networks
10
作者 马光明 王中杰 《系统仿真技术》 2008年第2期98-101,共4页
We present a novel paradigm of sensor placement concerning data precision and estimation.Multiple abstract sensors are used to measure a quantity of a moving target in the scenario of a wireless sensor network.These s... We present a novel paradigm of sensor placement concerning data precision and estimation.Multiple abstract sensors are used to measure a quantity of a moving target in the scenario of a wireless sensor network.These sensors can cooperate with each other to obtain a precise estimate of the quantity in a real-time manner.We consider a problem on planning a minimum-cost scheme of sensor placement with desired data precision and resource consumption.Measured data is modeled as a Gaussian random variable with a changeable variance.A gird model is used to approximate the problem.We solve the problem with a heuristic algorithm using branch-and-bound method and tabu search.Our experiments demonstrate that the algorithm is correct in a certain tolerance,and it is also efficient and scalable. 展开更多
关键词 传感器 无线技术 网络 数据处理
在线阅读 下载PDF
Weight Data Fusion Based on Mutual Support Applied in Large Diameter Measurement 被引量:1
11
作者 WANG Biao YU Xiaofen XU Congyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期562-566,共5页
The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature fie... The on-line diameter measurement of larger axis workpieces is hard to achieve high precision detection, because of the bad environment of locale, the problem to amend the measuring error by non-uniform temperature field, and the difficulty to collimate and locate by usual method. By improving the measurement accuracy of larger axis accessories, it is useful to raise axis and hole's industry produce level. Because of the influence of complex environment in locale and some influential factors which are hard excluded from the large diameter measurement with multi-rolling-wheels method, the measurement results may not support or even contradict each other. To the situation, this paper puts forward a mutual support deviation distinguish data fusion method, including mutual support deviation detection and weight data fusion. The mutual support deviation detection part can effectively remove or weaken the unexpected impact on the measurement results and the weight data fusion part can get more accurate estimate result to the detected data. So the method can further improve the reliability of measurement results and increase the accuracy of the measurement system. By using the weight data fusion based on the mutual support (DFMS) to the simulation and experiment data, both simulation results and experiment results show that the method can effectively distinguish the data influenced by unexpected impact and improve the stability and reliability of measurement results. The new provided mutual support deviation distinguish method can be used to single sensor measurement and multi-sensor measurement, and can be used as a reference in the data distinguish of other area. The DFMS is helpful to realize the diameter measurement expanded uncertainty in 5 ×10^-6D or even higher when the measured axis workpiece's diameter is 1-5 m ( 1 m ≤ D ≤5 m ). 展开更多
关键词 MULTI-sensor mutual support weight factor data fusion rolling-wheel
在线阅读 下载PDF
Location Data Fusion Based on Group Consensus
12
作者 李国栋 陈维南 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期98-102,共5页
A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the loc... A new method of multi sensor location data fusion is proposed.The method is based on group consensus approach, which constructs group utility function (or its density) based on uncertainty of each sensor, and the location estimation is obtained based on the group utility function (or its density). The simulation results show that the method is better than those of mean and median estimation, and outlier and sensor failure can not affect the location estimation. 展开更多
关键词 multi sensor data fusion UTILITY function GROUP CONSENSUS LOCATION data fusion
在线阅读 下载PDF
Application of data fusion on multi-function earth drill
13
作者 胡长胜 赵伟民 +3 位作者 李瑰贤 杨春蕾 牛红 胡长军 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期89-92,共4页
taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control depende... taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control dependence, the detecting method of the earth drill’s working state is introduced. Multi sensor data fusion is done with the aid of BP neural network in Matlab. The data to be interfused are pre processed and the program of simulation and “point checking” is given. 展开更多
关键词 multi function earth drill multi sensor integration and data fusion normalization preprocessing simulation experiment
在线阅读 下载PDF
SEQUENTIAL ALGORITHM FOR MULTISENSOR PROBABILISTIC DATA ASSOCIATION
14
作者 Hu Wenlong Mao Shiyi(Dept of Electronic Engineering, Bejiing University of Aeronauticsand Astronatutics, Beijing, 100083, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第2期144-150,共7页
Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorit... Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association. 展开更多
关键词 multiple target tracking sensorS sequential analysis data association data fusion
在线阅读 下载PDF
基于多传感器数据融合的互异网络轴承故障诊断方法 被引量:2
15
作者 赵小强 李森 《计算机工程与应用》 北大核心 2025年第5期323-333,共11页
为了解决单传感器单一分支网络的输入容易受到外界干扰以及在不同域信号转换过程中丢失特征信息,导致故障诊断效果不佳的问题,提出了基于多传感器数据融合的互异网络轴承故障诊断方法。设计了数据预处理模块,以数据级的融合方式实现来... 为了解决单传感器单一分支网络的输入容易受到外界干扰以及在不同域信号转换过程中丢失特征信息,导致故障诊断效果不佳的问题,提出了基于多传感器数据融合的互异网络轴承故障诊断方法。设计了数据预处理模块,以数据级的融合方式实现来自多传感器的多角度故障特征互补,充分考虑了轴承设备多传感器之间的相关性。同时,将经过快速傅里叶变换(FFT)和频率切片小波变换(FSWT)处理后的信号融合为多域信号作为模型的输入,以多域信号独立作为模型输入的形式确保不同域信号在转换过程中关键的特征信息不会丢失。该方法针对不同的域信号设计了相对应的互异网络结构对多传感器数据高维非线性空间中的低维特征关键提取,这也为设备维修人员提供了更加可靠方便的维修手段。当其中一个分支网络的输入受到外界干扰时,另外两个分支网络会起到纠错的作用,不仅增强了网络的容错能力,同时也会增加网络的特征互补能力。利用记忆单元将特征视为不同的时间步,以此建立不同故障特征之间的依赖关系。为了防止模型陷入局部最优,使用适配于所提模型的学习率余弦退火算法优化模型训练。在两个轴承数据集上进行实验,结果表明,该方法拥有好的故障诊断效果和泛化能力,可以满足基于多传感器数据融合的轴承故障诊断任务。 展开更多
关键词 滚动轴承 故障诊断 多传感器 互异网络 数据融合 特征互补
在线阅读 下载PDF
基于多传感器感知的船舶柴油机热力参数监测研究
16
作者 邱亚兰 王建林 《舰船科学技术》 北大核心 2025年第6期106-109,共4页
柴油机是船舶动力的核心装置,对其热力参数进行监测可以有效提高船舶航行安全性。提出一种基于多传感器感知的船舶柴油机热力参数监测系统,设计系统基本结构,对热力参数相关的传感器进行硬件选型,设计燃油温度和压力传感器基本结构,提... 柴油机是船舶动力的核心装置,对其热力参数进行监测可以有效提高船舶航行安全性。提出一种基于多传感器感知的船舶柴油机热力参数监测系统,设计系统基本结构,对热力参数相关的传感器进行硬件选型,设计燃油温度和压力传感器基本结构,提出一种基于贝叶斯网络的多传感器数据融合方法,并采用加权平均法进行决策融合,在此基础上使用构建的监测系统对等多个压力和温度传感器数据进行实时监测,计算得到的决策融合结果能够有效排除异常传感器对热力参数监测结果的干扰。 展开更多
关键词 多传感器 数据融合 船舶柴油机 热力参数
在线阅读 下载PDF
物联网环境下异步多传感器数据深度融合算法研究
17
作者 殷存举 张薇 《传感技术学报》 北大核心 2025年第7期1321-1326,共6页
在物联网环境中,现有方法未考虑异步多传感器数据融合过程中权重和偏置的计算,从而导致信息出现缺失,降低融合结果的质量。为了改善这个问题,提出了一种考虑引入权重和偏置计算的异步多传感器数据深度融合算法。首先采用经验小波变换方... 在物联网环境中,现有方法未考虑异步多传感器数据融合过程中权重和偏置的计算,从而导致信息出现缺失,降低融合结果的质量。为了改善这个问题,提出了一种考虑引入权重和偏置计算的异步多传感器数据深度融合算法。首先采用经验小波变换方法对异步多传感器数据展开重构处理,提高数据质量;其次利用逐步回归特征选择方法选取出最有信息量的特征,以减少冗余信息降低维度;最后,通过计算选择特征在深度融合过程中的权重与偏置,并结合深度自动编码器网络(DAEN网络),完成对异步多传感器数据的深度融合。结果表明,所提算法均方误差可维持在1.0 dB以下,平均绝对百分比误差在3.5%以下,拟合度为0.96,融合耗时在8.5s以下,具有较好的融合效果和效率。 展开更多
关键词 异步多传感器 数据融合 经验小波变换方法 逐步回归特征选择 DAEN网络
在线阅读 下载PDF
基于多传感器数据融合的动作识别训练辅助系统仿真研究
18
作者 钟华 孙莉 《自动化与仪器仪表》 2025年第7期205-209,共5页
针对传统体育动作数据融合和识别精度低,导致体育运动训练效果不佳的问题,设计一个基于多传感器数据融合的体育动作识别训练辅助系统。利用惯性传感器和视觉传感器分别进行人体关节点和深度图像采集;然后对两个传感器数据进行融合,并将... 针对传统体育动作数据融合和识别精度低,导致体育运动训练效果不佳的问题,设计一个基于多传感器数据融合的体育动作识别训练辅助系统。利用惯性传感器和视觉传感器分别进行人体关节点和深度图像采集;然后对两个传感器数据进行融合,并将其输入至搭建的PSO-BPNN模型中进行体育动作识别;最后将该模型应用到搭建的辅助训练系统中进行体育训练,以提升体育训练效果。仿真结果表明,提出的基于PSO-BPNN模型对走路、跑步、踢球、弯腰、下蹲5类体育动作的识别准确率分别为96.34%、91.77%、97.58%、99.42%和98.01%,均高于现有的PSO-LSTM模型和SA-SVM模型的体育动作识别准确率。系统应用发现,设计的系统可实现体育动作各关节点准确识别,与标准关节点间误差较小,可提升体育动作辅助训练效果。 展开更多
关键词 多传感器 数据融合 体育动作识别 辅助训练 BPNN神经网络
原文传递
基于儿童友好导向的景区智能安全管理及监测系统设计
19
作者 张曼 冷洋 +2 位作者 邵金凤 安子依 梁亚娟 《河北能源职业技术学院学报》 2025年第3期49-53,共5页
基于儿童友好安全导向,设计了一套景区智能安全管理及监测系统。该系统通过实时监测、风险预警以及智能响应等功能,为儿童提供更安全的游玩环境,并为景区管理者提供科学的安全管理工具。系统采用STM32微控制器采集多传感数据,通过融合... 基于儿童友好安全导向,设计了一套景区智能安全管理及监测系统。该系统通过实时监测、风险预警以及智能响应等功能,为儿童提供更安全的游玩环境,并为景区管理者提供科学的安全管理工具。系统采用STM32微控制器采集多传感数据,通过融合算法处理数据,并将边缘处理后的数据通过4G模块传输至云平台,实现系统实时监测和预警管控功能。本文为景区安全管理部门提供了有效的安全监测与预警手段,增强了对于儿童户外旅行的安全管理效能。 展开更多
关键词 儿童友好 景区安全监测 多传感数据融合 景区安全预警 云平台
在线阅读 下载PDF
液压泵故障PSO-BP诊断层与D-S决策层融合诊断
20
作者 刘源 李建国 王飞飞 《机械设计与制造》 北大核心 2025年第6期151-154,共4页
为了解决用单一(振动,压力,温度)传感器对液压泵故障诊断时效率低的问题,采用粒子群(PSO)与BP神经网络相融合的方式使BP网络获得更强全局寻优性能,利用D-S证据理论来完成多传感器信号的融合处理,从而获得更优的诊断性能。研究结果表明:... 为了解决用单一(振动,压力,温度)传感器对液压泵故障诊断时效率低的问题,采用粒子群(PSO)与BP神经网络相融合的方式使BP网络获得更强全局寻优性能,利用D-S证据理论来完成多传感器信号的融合处理,从而获得更优的诊断性能。研究结果表明:选择融合算法联合诊断时柱塞磨损达到99.12%的准确率。采用优化处理的融合算法测定磨损故障时获得了几乎为100%的支持度,通过对比可以排除其它故障。单一(振动,压力,温度)传感器诊断精度基本没有超多90%,通过DS决策层把数据进行融合后精度都在98%以上,因此充分证明了PSO-BP诊断层与D-S决策层融合模型的可行性。本研究具有很高的液压泵故障诊断效率,尤其适用于一些微弱的故障信息,对提前侦测故障危险具有很好的价值。 展开更多
关键词 柱塞泵 故障诊断 多源传感器 神经网络 数据融合 诊断输出
在线阅读 下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部