期刊文献+
共找到112,652篇文章
< 1 2 250 >
每页显示 20 50 100
Thermally Drawn Flexible Fiber Sensors:Principles,Materials,Structures,and Applications
1
作者 ZhaoLun Zhang Yuchang Xue +7 位作者 Pengyu Zhang Xiao Yang Xishun Wang Chunyang Wang Haisheng Chen Xinghua Zheng Xin Yin Ting Zhang 《Nano-Micro Letters》 2026年第1期95-129,共35页
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib... Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed. 展开更多
关键词 Thermally drawn fiber sensors Sensing principles Temperature sensors Mechanical sensors Multifunctional sensors
在线阅读 下载PDF
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus
2
作者 Ali Sedighi Tianyu Kou +1 位作者 Hui Huang Yi Li 《Nano-Micro Letters》 2026年第1期375-437,共63页
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in... Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management. 展开更多
关键词 Wearable biosensors Multimodal sensors Diabetes monitoring Sweat biomarkers Glucose biosensors
在线阅读 下载PDF
Smart Gas Sensors:Recent Developments and Future Prospective 被引量:2
3
作者 Boyang Zong Shufang Wu +3 位作者 Yuehong Yang Qiuju Li Tian Tao Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期55-86,共32页
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart... Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living. 展开更多
关键词 Smart gas sensor Electronic sensor Optoelectronic sensor Flexible and wearable sensor Artificial intelligence
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
4
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes sensor Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
5
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Ultrathin Gallium Nitride Quantum-Disk-in-Nanowire-Enabled Reconfigurable Bioinspired Sensor for High-Accuracy Human Action Recognition
6
作者 Zhixiang Gao Xin Ju +10 位作者 Huabin Yu Wei Chen Xin Liu Yuanmin Luo Yang Kang Dongyang Luo JiKai Yao Wengang Gu Muhammad Hunain Memon Yong Yan Haiding Sun 《Nano-Micro Letters》 2026年第2期439-453,共15页
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac... Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics. 展开更多
关键词 GaN nanowire Quantum-confined Stark effect Voltage-tunable photoresponse Bioinspired sensor Artificial vision system
在线阅读 下载PDF
Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
7
作者 Pei Li Shipan Lang +6 位作者 Lei Xie Yong Zhang Xin Gou Chao Zhang Chenhui Dong Chunbao Li Jun Yang 《Nano-Micro Letters》 2026年第2期454-470,共17页
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show... The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices. 展开更多
关键词 Iontronic sensor Skin-inspired design Linear range Linear sensing factor Biomechanical monitoring
在线阅读 下载PDF
Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics
8
作者 Lin Guo Rui Xu Denys Makarov 《Chinese Journal of Structural Chemistry》 2025年第2期14-16,共3页
In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately dete... In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately detect any form of relative movement of objects without physical contact.For instance,in the precise control of robotic arms or machine tools,a permanent magnet is used as a reference.The magnetic sensor detects the relative movement of magnet by sensing changes in the magnetic field strength.These changes are converted into electrical signals,which are fed back to the control system,enabling accurate positioning and control of the device.This advanced detection technology not only greatly enhances measurement precision but also significantly extends the lifespan of equipment.Among various types of magnetic field sensors,magnetoresistive(MR)sensors stand out for their exceptional performance[1].The high sensitivity allows them to detect minimal changes of magnetic fields in high-precision measurements.Today,MR sensors are widely used across numerous fields,including automobile industries,information processing and storage,navigation systems,biomedical applications,etc[1,2].With their outstanding performance and wide-ranging applications,MR sensors are at the forefront of sensor technology. 展开更多
关键词 permanent magnet field sensors magnetic field sensors magnetic sensor machine toolsa MAGNETOELECTRONICS magnetoresistive sensors precise control robotic arms
原文传递
Force and impulse multi-sensor based on flexible gate dielectric field effect transistor
9
作者 Chao Tan Junling Lü +3 位作者 Chunchi Zhang Dong Liang Lei Yang Zegao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期214-220,共7页
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ... Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months. 展开更多
关键词 flexible gate dielectric transistor force sensor impulse sensor force sensor array
在线阅读 下载PDF
Development of a composite sandwich-structure piezoresistive pressure sensor for subtle-pressures application
10
作者 Mosayeb Shiri Nowrouz Mohammad Nouri Mohammad Riahi 《Defence Technology(防务技术)》 2025年第3期48-61,共14页
The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtl... The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtle pressures has received less attention. The limitations in the inherent gauge factor in silicon, have led to the development of polymer and composite resistive sensitive elements. However,in the development of resistance sensing elements, the structure of composite elements with reinforcement core has not been used. The proposed PS had a composite sandwich structure consisting of a nanocomposite graphene layer covered by layers of PDMS at the bottom and on the top coupled with a polyimide(PI) core. Various tests were performed to analyze the PS. The primary design target was improved sensitivity, with a finite-element method(FEM) utilized to simulate the stress profile over piezoresistive elements and membrane deflection at various pressures. The PS manufacturing process is based on Laser-engraved graphene(LEG) technology and PDMS casting. Experimental data indicated that the manufactured PS exhibits a sensitivity of 67.28 mV/kPa for a pressure range of 30-300 Pa in ambient temperature. 展开更多
关键词 Piezoresistive pressure sensor sensor manufacturing FEM Stretchable sensor LEG
在线阅读 下载PDF
A smart finger patch with coupled magnetoelastic and resistive bending sensors
11
作者 Ziyi Dai Mingrui Wang +4 位作者 Yu Wang Zechuan Yu Yan Li Weidong Qin Kai Qian 《Journal of Semiconductors》 2025年第1期194-203,共10页
In the era of Metaverse and virtual reality(VR)/augmented reality(AR),capturing finger motion and force interactions is crucial for immersive human-machine interfaces.This study introduces a flexible electronic skin f... In the era of Metaverse and virtual reality(VR)/augmented reality(AR),capturing finger motion and force interactions is crucial for immersive human-machine interfaces.This study introduces a flexible electronic skin for the index finger,addressing coupled perception of both state and process in dynamic tactile sensing.The device integrates resistive and giant magnetoelastic sensors,enabling detection of surface pressure and finger joint bending.This e-skin identifies three phases of finger action:bending state,dynamic normal force and tangential force(sweeping).The system comprises resistive carbon nanotubes(CNT)/polydimethylsiloxane(PDMS)films for bending sensing and magnetoelastic sensors(NdFeB particles,EcoFlex,and flexible coils)for pressure detection.The inward bending resistive sensor,based on self-assembled microstructures,exhibits directional specificity with a response time under 120 ms and bending sensitivity from 0°to 120°.The magnetoelastic sensors demonstrate specific responses to frequency and deformation magnitude,as well as sensitivity to surface roughness during sliding and material hardness.The system’s capability is demonstrated through tactile-based bread type and condition recognition,achieving 92%accuracy.This intelligent patch shows broad potential in enhancing interactions across various fields,from VR/AR interfaces and medical diagnostics to smart manufacturing and industrial automation. 展开更多
关键词 human machine interface flexible sensor wearable sensor giant magnetoelastic effect inward bending sensor
在线阅读 下载PDF
Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber
12
作者 Shilong Liu Yang Li +2 位作者 Hongbin Hu Bing Sun Zuxing Zhang 《Chinese Physics B》 2025年第7期394-400,共7页
A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in thi... A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in this paper.High-order acoustic modes(HOAMs)are used to achieve individual or simultaneous measurement of the two parameters.Transverse acoustic waves(TAWs)involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding,which will be reflected in a linear shift of the acoustic resonance frequency.By analyzing the frequencies of specific scattering peaks,the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously.The highest measured temperature and acoustic impedance sensitivities are 184.93 k Hz/℃and444.56 k Hz/MRayl,and the measurement accuracies are 0.09℃and 0.009 MRayl,respectively,which are both at desirable levels.We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements. 展开更多
关键词 forward stimulated Brillouin scattering(FSBS) fiber optic sensor temperature sensor acoustic impedance sensor simultaneous measurement
原文传递
Research on a compact and high sensitivity gas pressure sensor based on fiber Fabry-Pérot interferometer and Bragg grating
13
作者 LIU Qinpeng XING Meihua +2 位作者 YANG Di LIU Bo YAN Cheng 《Optoelectronics Letters》 2025年第6期321-327,共7页
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod... A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application. 展开更多
关键词 fiber bragg grating fbg gas pressure sensor temperature sensor separate measurement fiber Bragg grating fiber Fabry P rot interferometer theoretical model pressure temperature sensing micro silicon cavity sensor structure
原文传递
Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems 被引量:2
14
作者 Haihua Wang Mingjian Zhou +5 位作者 Xiaolong Jia Hualong Wei Zhenjie Hu Wei Li Qiumeng Chen Lei Wang 《Journal of Semiconductors》 2025年第1期179-192,共14页
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a... Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements. 展开更多
关键词 sensor multimodal sensors machine learning deep learning intelligent system
在线阅读 下载PDF
Integration of AI with artificial sensory systems for multidimensional intelligent augmentation 被引量:1
15
作者 Changyu Tian Youngwook Cho +3 位作者 Youngho Song Seongcheol Park Inho Kim Soo-Yeon Cho 《International Journal of Extreme Manufacturing》 2025年第4期35-54,共20页
Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense in... Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense into user-relevant information,yet conventional signal processing methods struggle with the massive scale,noise,and artificial sensory systems characteristics of data generated by artificial sensory devices.Integrating artificial intelligence(AI)is essential for addressing these challenges and enhancing the performance of artificial sensory systems,making it a rapidly growing area of research in recent years.However,no studies have systematically categorized the output functions of these systems or analyzed the associated AI algorithms and data processing methods.In this review,we present a systematic overview of the latest AI techniques aimed at enhancing the cognitive capabilities of artificial sensory systems replicating the five human senses:touch,taste,vision,smell,and hearing.We categorize the AI-enabled capabilities of artificial sensory systems into four key areas:cognitive simulation,perceptual enhancement,adaptive adjustment,and early warning.We introduce specialized AI algorithms and raw data processing methods for each function,designed to enhance and optimize sensing performance.Finally,we offer a perspective on the future of AI-integrated artificial sensory systems,highlighting technical challenges and potential real-world application scenarios for further innovation.Integration of AI with artificial sensory systems will enable advanced multimodal perception,real-time learning,and predictive capabilities.This will drive precise environmental adaptation and personalized feedback,ultimately positioning these systems as foundational technologies in smart healthcare,agriculture,and automation. 展开更多
关键词 artificialsensorysystem artificial intelligence sensor deep learning signal processing
在线阅读 下载PDF
Recent Advances in Non-Enzymatic Electrochemical Sensors for Theophylline Detection
16
作者 Ernis Gustria Putri Yulia M T A +5 位作者 Syauqi Muhammad Iqbal Jiwanti Prastika Krisma Hartati Yeni Wahyuni Kondo Takeshi Anjani Qonita Kurnia Gunlazuardi Jarnuzi 《电化学(中英文)》 北大核心 2025年第3期1-24,共24页
Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre... Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors. 展开更多
关键词 Theophylline detection Non-enzymatic sensors Electrochemical sensors Modifier electrode Reaction mechanism
在线阅读 下载PDF
Modeling and simulation of a reconfigurable multifunctional optical sensor
17
作者 Shaher DWIK Gurusamy SASIKALA 《Optoelectronics Letters》 2025年第4期205-211,共7页
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec... Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC). 展开更多
关键词 RECONFIGURABLE optical sensor alternate operating modes tracking systems MULTIFUNCTIONAL optical element position sensitive device psd sensor PSD
原文传递
Flexible physical sensors based on membranes:from design to application
18
作者 Liwei Lin Changqing Wu +9 位作者 Youfeng Cui Minghao Pan Ning Fang Man Zhou Yuzhe Zhang Wang Zhang Zhongyu Li Ziyao Zhou Yuanzhe Piao Sun-Ha Paek 《International Journal of Extreme Manufacturing》 2025年第2期270-308,共39页
The flexible physical sensors have the advantage of pliability and extensibility and can be easily twisted or curved.The development of flexibility from rigidity has significantly increased the application situations ... The flexible physical sensors have the advantage of pliability and extensibility and can be easily twisted or curved.The development of flexibility from rigidity has significantly increased the application situations for sensors,especially in intelligent robots,tactile platforms,wearable medical sensors,bionic devices,and other fields.The research of membrane-based flexible physical sensors relies on the development of advanced materials and technologies,which have been derived from a wide range of applications.Various technical methods and principles have gradually matured according to the different applications and materials used.The first section of this review discusses membrane substrates and functional materials,summarizing the development of flexible physical sensors.According to the technical sensing principles,the review is concerned with the state of research on physical sensing platforms.Lastly,the difficulties and chances for the design of emerging membrane-based flexible physical sensors in the coming years are presented. 展开更多
关键词 flexible membrane active materials physical sensing platforms non-self-powered sensors self-powered sensors
在线阅读 下载PDF
Special topic on high-sensitivity sensors
19
作者 Wang Zhenjun Liu Dong 《Journal of Measurement Science and Instrumentation》 2025年第3期I0001-I0001,共1页
High-sensitivity sensors represent a critical frontier in modern sensing technology,driving innovations across fields such as biomedical monitoring,precision instrumentation,environmental detection,and indus-trial aut... High-sensitivity sensors represent a critical frontier in modern sensing technology,driving innovations across fields such as biomedical monitoring,precision instrumentation,environmental detection,and indus-trial automation.As demands for accuracy,miniaturization,and reliability continue to grow,developing novel sensor architectures and functional materials has become essential to achieving enhanced performance under extreme or complex conditions. 展开更多
关键词 industrial automation environmental detection sensing technologydriving biomedical monitoring enhanced performance high sensitivity sensors novel sensor architectures functional materials precision instrumentation
在线阅读 下载PDF
Reliability Service Oriented Efficient Embedding Method Towards Virtual Hybrid Wireless Sensor Networks
20
作者 Wu Dapeng Lai Wan +3 位作者 Sun Meiyu Yang Zhigang Zhang Puning Wang Ruyan 《China Communications》 2025年第11期161-175,共15页
Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability ... Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability of sensing tasks and ultimately affect the long-term revenue of the infrastructure providers.In response to these problems,this paper proposes an efficient virtual network embedding algorithm with a reliable service guarantee.Based on the topological attributes of nodes,a method for evaluating the physical network resource importance degree is proposed,and the nodes with rich resources are selected to improve embedding efficiency.Then,a method for evaluating the physical network reliability degree is proposed to predict the probability of mobile sensors providing uninterrupted services.The simulation results show that the proposed algorithm improves the acceptance rate of virtual sensor networks(VSN)embedding requests and the long-term revenue of the infrastructure providers. 展开更多
关键词 hybrid wireless sensor networks mobile sensor reliability service virtual network embedding
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部