The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
The 810-nm InGaAlAs/AlGaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conver- sion efficiency at ...The 810-nm InGaAlAs/AlGaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conver- sion efficiency at continuous-wave (CW) power output. The threshold current density and slope efficiency of the device are 180 A/cm^2 and 1.3 W/A, respectively. The internal loss and the internal quantum efficiency are 1.7 cm^-1 and 93%, respectively. The 70% maximum power conversion efficiency is achieved with narrow far-field patterns.展开更多
The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum...The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm^2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
文摘The 810-nm InGaAlAs/AlGaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conver- sion efficiency at continuous-wave (CW) power output. The threshold current density and slope efficiency of the device are 180 A/cm^2 and 1.3 W/A, respectively. The internal loss and the internal quantum efficiency are 1.7 cm^-1 and 93%, respectively. The 70% maximum power conversion efficiency is achieved with narrow far-field patterns.
文摘The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm^2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.