期刊文献+
共找到781,354篇文章
< 1 2 250 >
每页显示 20 50 100
Semi-supervised method for tunnel blasting quality prediction using measurement while drilling data
1
作者 Hengxiang Jin Qian Fang +3 位作者 Jun Wang Jiayao Chen Gan Wang Guoli Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2633-2649,共17页
Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is p... Predicting blasting quality during tunnel construction holds practical significance.In this study,a new semi-supervised learning method using convolutional variational autoencoder(CVAE)and deep neural network(DNN)is proposed for the prediction of blasting quality grades.Tunnel blasting quality can be measured by over/under excavation.The occurrence of over/under excavation is influenced by three factors:geological conditions,blasting parameters,and tunnel geometric dimensions.The proposed method reflects the geological conditions through measurements while drilling and utilizes blasting parameters,tunnel geometric dimensions,and tunnel depth as input variables to achieve tunnel blasting quality grades prediction.Furthermore,the model is optimized by considering the influence of surrounding rock mass features on the predicted positions.The results demonstrate that the proposed method outperforms other commonly used machine learning and deep learning algorithms in extracting over/under excavation feature information and achieving blasting quality prediction. 展开更多
关键词 Tunnel blasting quality Over/under excavation semi-supervised learning Measurement while drilling(MWD)
在线阅读 下载PDF
Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review 被引量:4
2
作者 Isaac Baffour Senkyire Zhe Liu 《International Journal of Automation and computing》 EI CSCD 2021年第6期887-914,共28页
Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdo... Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly connected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are often recognized late;hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding,there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-supervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The supervised methods perform well when the used training data represents the target data, but the methods require large manually annotated data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assumptions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning techniques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automatic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mechanism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future research opportunities are enumerated. 展开更多
关键词 Abdominal organ supervised segmentation semi-supervised segmentation evaluation metrics image segmentation machine learning
原文传递
Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces
3
作者 Song Liu Qiqi Li +3 位作者 Qing Ye Zhiwei Zhao Dianyu E Shibo Kuang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期204-216,共13页
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ... Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics. 展开更多
关键词 blast furnace gas flow state semi-supervised learning mean teacher feature loss
在线阅读 下载PDF
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning 被引量:2
4
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chi Yung Chung 《Journal of Energy Chemistry》 2025年第2期524-534,I0011,共12页
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo... Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices. 展开更多
关键词 Lithium-ion batteries Battery degradation Remaining useful life semi-supervised learning
在线阅读 下载PDF
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
5
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 semi-supervised medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly 被引量:3
6
作者 Yuna Han Hangbae Chang 《Computers, Materials & Continua》 SCIE EI 2023年第7期221-237,共17页
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani... Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios. 展开更多
关键词 Intrusion detection system(IDS) adaptive learning semi-supervised learning explainable artificial intelligence(XAI) monitoring system
在线阅读 下载PDF
Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples 被引量:1
7
作者 Xiaomeng LI Huili LU +1 位作者 Jianhong YANG Fu CHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期114-124,共11页
The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited stand... The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited standard samples with labeled certified concentrations are available. A novel semi-supervised LIBS quantitative analysis method is proposed, based on co-training regression model with selection of effective unlabeled samples. The main idea of the proposed method is to obtain better regression performance by adding effective unlabeled samples in semisupervised learning. First, effective unlabeled samples are selected according to the testing samples by Euclidean metric. Two original regression models based on least squares support vector machine with different parameters are trained by the labeled samples separately, and then the effective unlabeled samples predicted by the two models are used to enlarge the training dataset based on labeling confidence estimation. The final predictions of the proposed method on the testing samples will be determined by weighted combinations of the predictions of two updated regression models. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples were carried out, in which 5 samples with labeled concentrations and 11 unlabeled samples were used to train the regression models and the remaining 7 samples were used for testing. With the numbers of effective unlabeled samples increasing, the root mean square error of the proposed method went down from 1.80% to 0.84% and the relative prediction error was reduced from 9.15% to 4.04%. 展开更多
关键词 LIBS EFFECTIVE unlabeled samples CO-TRAINING semi-supervised LABELING CONFIDENCE estimation
在线阅读 下载PDF
General image classification method based on semi-supervised generative adversarial networks 被引量:2
8
作者 Su Lei Xu Xiangyi +1 位作者 Lu Qiyu Zhang Wancai 《High Technology Letters》 EI CAS 2019年第1期35-41,共7页
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis... Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10. 展开更多
关键词 generative adversarial network(GAN) semi-supervised image classification
在线阅读 下载PDF
Soft-Sensing Method with Online Correction Based on Semi-Supervised Learning 被引量:1
9
作者 汤奇峰 李德伟 席裕庚 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期171-176,共6页
Soft sensing has been widely used in chemical industry to build an online monitor of the variables which are unmeasurable online or measurable online but with a high cost. One inherent difficulty is insufficiency of t... Soft sensing has been widely used in chemical industry to build an online monitor of the variables which are unmeasurable online or measurable online but with a high cost. One inherent difficulty is insufficiency of the training samples because the labeled data are limited. Besides, the traditional soft-sensing structure has no online correction mechanism. The forecasting result may be incorrect if the working condition is changed. In this work, a semi-supervised learning(SSL) method is proposed to build the soft-sensing model by use of the unlabeled data. Meanwhile, an online correction mechanism is proposed to establish a soft-sensing approach. The mechanism estimates the input variables at each step by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and generalization ability than other approaches. 展开更多
关键词 soft-sensing semi-supervised learning(SSL) online correction neural network
原文传递
A Semi-Supervised WLAN Indoor Localization Method Based on l1-Graph Algorithm 被引量:1
10
作者 Liye Zhang Lin Ma Yubin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期55-61,共7页
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle... For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase. 展开更多
关键词 indoor location estimation l1-graph algorithm semi-supervised learning wireless local area networks(WLAN)
在线阅读 下载PDF
Enhancing Respiratory Sound Classification Based on Open-Set Semi-Supervised Learning
11
作者 Won-Yang Cho Sangjun Lee 《Computers, Materials & Continua》 2025年第8期2847-2863,共17页
The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although d... The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although deep learning has been increasingly applied to this task,most existing approaches have primarily relied on supervised learning.Since supervised learning requires large amounts of labeled data,recent studies have explored self-supervised and semi-supervised methods to overcome this limitation.However,these approaches have largely assumed a closedset setting,where the classes present in the unlabeled data are considered identical to those in the labeled data.In contrast,this study explores an open-set semi-supervised learning setting,where the unlabeled data may contain additional,unknown classes.To address this challenge,a distance-based prototype network is employed to classify respiratory sounds in an open-set setting.In the first stage,the prototype network is trained using labeled and unlabeled data to derive prototype representations of known classes.In the second stage,distances between unlabeled data and known class prototypes are computed,and samples exceeding an adaptive threshold are identified as unknown.A new prototype is then calculated for this unknown class.In the final stage,semi-supervised learning is employed to classify labeled and unlabeled data into known and unknown classes.Compared to conventional closed-set semisupervised learning approaches,the proposed method achieved an average classification accuracy improvement of 2%–5%.Additionally,in cases of data scarcity,utilizing unlabeled data further improved classification performance by 6%–8%.The findings of this study are expected to significantly enhance respiratory sound classification performance in practical clinical settings. 展开更多
关键词 Respiratory sound classification open-set semi-supervised
暂未订购
Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis
12
作者 Kun Liu Chen Bao Sidong Liu 《Computers, Materials & Continua》 2025年第3期4451-4468,共18页
Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,l... Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,labeled data is very scarce due to patient privacy concerns.For researchers,obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding.In addition,skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions.In this paper,we propose a model called Coalition Sample Relation Consistency(CSRC),a consistency-based method that leverages Canonical Correlation Analysis(CCA)to capture the intrinsic relationships between samples.Considering that traditional consistency-based models only focus on the consistency of prediction,we additionally explore the similarity between features by using CCA.We enforce feature relation consistency based on traditional models,encouraging the model to learn more meaningful information from unlabeled data.Finally,considering that cross-entropy loss is not as suitable as the supervised loss when studying with imbalanced datasets(i.e.,ISIC 2017 and ISIC 2018),we improve the supervised loss to achieve better classification accuracy.Our study shows that this model performs better than many semi-supervised methods. 展开更多
关键词 semi-supervised learning skin lesion classification sample relation consistency class imbalanced
在线阅读 下载PDF
Semi-supervised cardiac magnetic resonance image segmentation based on domain generalization
13
作者 SHAO Hong HOU Jinyang CUI Wencheng 《High Technology Letters》 2025年第1期41-52,共12页
In the realm of medical image segmentation,particularly in cardiac magnetic resonance imaging(MRI),achieving robust performance with limited annotated data is a significant challenge.Performance often degrades when fa... In the realm of medical image segmentation,particularly in cardiac magnetic resonance imaging(MRI),achieving robust performance with limited annotated data is a significant challenge.Performance often degrades when faced with testing scenarios from unknown domains.To address this problem,this paper proposes a novel semi-supervised approach for cardiac magnetic resonance image segmentation,aiming to enhance predictive capabilities and domain generalization(DG).This paper establishes an MT-like model utilizing pseudo-labeling and consistency regularization from semi-supervised learning,and integrates uncertainty estimation to improve the accuracy of pseudo-labels.Additionally,to tackle the challenge of domain generalization,a data manipulation strategy is introduced,extracting spatial and content-related information from images across different domains,enriching the dataset with a multi-domain perspective.This papers method is meticulously evaluated on the publicly available cardiac magnetic resonance imaging dataset M&Ms,validating its effectiveness.Comparative analyses against various methods highlight the out-standing performance of this papers approach,demonstrating its capability to segment cardiac magnetic resonance images in previously unseen domains even with limited annotated data. 展开更多
关键词 semi-supervised domain generalization(DG) cardiac magnetic resonance image segmentation
在线阅读 下载PDF
An Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary
14
作者 Duong Tien Dung Ha Hai Nam +1 位作者 Nguyen Long Giang Luong Thi Hong Lan 《Computers, Materials & Continua》 2025年第12期5625-5642,共18页
Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance.This method effectively integrates prior knowledge using pre-labeled data.While s... Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance.This method effectively integrates prior knowledge using pre-labeled data.While semi-supervised fuzzy clustering(SSFC)methods leverage limited labeled data to enhance accuracy,they remain highly susceptible to inappropriate or mislabeled prior knowledge,especially in noisy or overlapping datasets where cluster boundaries are ambiguous.To enhance the effectiveness of clustering algorithms,it is essential to leverage labeled data while ensuring the safety of the previous knowledge.Existing solutions,such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method(TS3FCM),struggle with random centroid initialization,fixed neighbor radius formulas,and handling outliers or noise at cluster overlaps.A new framework called Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary(AS3FCPC)is proposed in this paper to deal with these problems.It does this by combining pairwise constraints and active learning.AS3FCPC uses active learning to query only the most informative data instances close to the cluster boundaries.It also uses pairwise constraints to enforce the cluster structure,which makes the system more accurate and robust.Extensive test results on diverse datasets,including challenging noisy and overlapping scenarios,demonstrate that AS3FCPC consistently achieves superior performance compared to state-of-the-art methods like TS3FCM and other baselines,especially when the data is noisy and overlaps.This significant improvement underscores AS3FCPC’s potential for reliable and accurate semisupervised fuzzy clustering in complex,real-world applications,particularly by effectively managing mislabeled data and ambiguous cluster boundaries. 展开更多
关键词 Active learning safe semi-supervised fuzzy clustering confidence weight boundary identification pairwise constraints
在线阅读 下载PDF
An Innovative Semi-Supervised Fuzzy Clustering Technique Using Cluster Boundaries
15
作者 Duong Tien Dung Ha Hai Nam +1 位作者 Nguyen Long Giang Luong Thi Hong Lan 《Computers, Materials & Continua》 2025年第12期5341-5357,共17页
Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data,guided by active learning,to enhance classification accuracy,particularly in complex and ambiguous datasets.Alth... Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data,guided by active learning,to enhance classification accuracy,particularly in complex and ambiguous datasets.Although several active semi-supervised fuzzy clustering methods have been developed previously,they typically face significant limitations,including high computational complexity,sensitivity to initial cluster centroids,and difficulties in accurately managing boundary clusters where data points often overlap among multiple clusters.This study introduces a novel Active Semi-Supervised Fuzzy Clustering algorithm specifically designed to identify,analyze,and correct misclassified boundary elements.By strategically utilizing labeled data through active learning,our method improves the robustness and precision of cluster boundary assignments.Extensive experimental evaluations conducted on three types of datasets—including benchmark UCI datasets,synthetic data with controlled boundary overlap,and satellite imagery—demonstrate that our proposed approach achieves superior performance in terms of clustering accuracy and robustness compared to existing active semi-supervised fuzzy clustering methods.The results confirm the effectiveness and practicality of our method in handling real-world scenarios where precise cluster boundaries are critical. 展开更多
关键词 Clustering algorithms semi-supervised classification active learning fuzzy clustering boundary elements boundary identification boundary correction
在线阅读 下载PDF
Multi-Consistency Training for Semi-Supervised Medical Image Segmentation
16
作者 WU Changxue ZHANG Wenxi +1 位作者 HAN Jiaozhi WANG Hongyu 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期800-814,共15页
Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adep... Medical image segmentation is a crucial task in clinical applications.However,obtaining labeled data for medical images is often challenging.This has led to the appeal of semi-supervised learning(SSL),a technique adept at leveraging a modest amount of labeled data.Nonetheless,most prevailing SSL segmentation methods for medical images either rely on the single consistency training method or directly fine-tune SSL methods designed for natural images.In this paper,we propose an innovative semi-supervised method called multi-consistency training(MCT)for medical image segmentation.Our approach transcends the constraints of prior methodologies by considering consistency from a dual perspective:output consistency across different up-sampling methods and output consistency of the same data within the same network under various perturbations to the intermediate features.We design distinct semi-supervised loss regression methods for these two types of consistencies.To enhance the application of our MCT model,we also develop a dedicated decoder as the core of our neural network.Thorough experiments were conducted on the polyp dataset and the dental dataset,rigorously compared against other SSL methods.Experimental results demonstrate the superiority of our approach,achieving higher segmentation accuracy.Moreover,comprehensive ablation studies and insightful discussion substantiate the efficacy of our approach in navigating the intricacies of medical image segmentation. 展开更多
关键词 semi-supervised learning(SSL) multi-consistency training(MCT) medical image segmentation intermediate feature perturbation
原文传递
Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods
17
作者 Di Wu Liming Feng Xiaoyu Wang 《Computers, Materials & Continua》 2025年第4期977-999,共23页
Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit informati... Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit information,a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model(SNID-ENSEF)is proposed.Syntactic elimination contrast learning leverages verb-dominant syntactic features,systematically replacing specific words to enhance data diversity.The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency.A neighborhood sample fusion strategy,based on sample distribution patterns,dynamically adjusts neighborhood size and fuses sample vectors to reduce noise and improve implicit information utilization and discovery accuracy.Experimental results show that SNID-ENSEF achieves average improvements of 0.88%,1.27%,and 1.30%in Normalized Mutual Information(NMI),Accuracy(ACC),and Adjusted Rand Index(ARI),respectively,outperforming PTJN,DPN,MTP-CLNN,and DWG models on the Banking77,StackOverflow,and Clinc150 datasets.The code is available at https://github.com/qsdesz/SNID-ENSEF,accessed on 16 January 2025. 展开更多
关键词 Natural language understanding semi-supervised new intent discovery syntactic elimination contrast learning neighborhood sample fusion strategies bidirectional encoder representations from transformers(BERT)
在线阅读 下载PDF
Threshold Filtering Semi-Supervised Learning Method for SAR Target Recognition
18
作者 Linshan Shen Ye Tian +4 位作者 Liguo Zhang Guisheng Yin Tong Shuai Shuo Liang Zhuofei Wu 《Computers, Materials & Continua》 SCIE EI 2022年第10期465-476,共12页
The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisup... The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing.However,the existing semisupervised learning techniques are all carried out under the assumption that the labeled data and the unlabeled data are in the same distribution,and its performance is mainly due to the two being in the same distribution state.When there is out-of-class data in unlabeled data,its performance will be affected.In practical applications,it is difficult to ensure that unlabeled data does not contain out-of-category data,especially in the field of Synthetic Aperture Radar(SAR)image recognition.In order to solve the problem that the unlabeled data contains out-of-class data which affects the performance of the model,this paper proposes a semi-supervised learning method of threshold filtering.In the training process,through the two selections of data by the model,unlabeled data outside the category is filtered out to optimize the performance of the model.Experiments were conducted on the Moving and Stationary Target Acquisition and Recognition(MSTAR)dataset,and compared with existing several state-of-the-art semi-supervised classification approaches,the superiority of our method was confirmed,especially when the unlabeled data contained a large amount of out-of-category data. 展开更多
关键词 semi-supervised learning SAR target recognition threshold filtering out-of-class data
在线阅读 下载PDF
An Inexact Implementation of Smoothing Homotopy Method for Semi-Supervised Support Vector Machines
19
作者 Huijuan Xiong Feng Shi 《Journal of Data Analysis and Information Processing》 2013年第1期1-7,共7页
Semi-supervised Support Vector Machines is an appealing method for using unlabeled data in classification. Smoothing homotopy method is one of feasible method for solving semi-supervised support vector machines. In th... Semi-supervised Support Vector Machines is an appealing method for using unlabeled data in classification. Smoothing homotopy method is one of feasible method for solving semi-supervised support vector machines. In this paper, an inexact implementation of the smoothing homotopy method is considered. The numerical implementation is based on a truncated smoothing technique. By the new technique, many “non-active” data can be filtered during the computation of every iteration so that the computation cost is reduced greatly. Besides this, the global convergence can make better local minima and then result in lower test errors. Final numerical results verify the efficiency of the method. 展开更多
关键词 semi-supervised Classification Support Vector Machines TRUNCATED SMOOTHING Technique Global CONVERGENCE
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
20
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部