Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its ...Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its heterogeneity in the context of planning, software & hardware installation, radio parameters setting, drive testing, optimization, healing and maintenance. These operations are time-consuming, labor & budget-intensive and error-prone if activated manually. Hence new approaches have to be designed and applied to meet those demands in a cost-effective way, Self-organizing networks (SON), is a promising approach to handle manual tasks with autonomous manners. More specifically the self-directed functions (self-planning, self-deployment, self-configuration, self-optimization and self-healing) are aid to reduce capital expenditure (CAPEX), implementation expenditure (IMPEX) and operational expenditure (OPEX). In this study, first we investigate the aforementioned impact factors of cost combined with self-functions. Then, we analyze the relative cost benefits causing from deploying the SON functions, using the economical method to have more precise results concerning those potential benefits. At last, the result shows that there is a significant difference in expenses and revenues of WSP with and without SON after enabling self-functions in wireless network.展开更多
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod...The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target pro...For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC).展开更多
The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are ...The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems.展开更多
Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Org...Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Organizing Map(SOM)hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting(XGBoost)for multi-class classification can improve network traffic intrusion detection.The proposed model is evaluated on the NSL-KDD dataset.The hybrid approach outperforms the baseline line models,Multilayer perceptron model,and SOM-KNN(k-nearest neighbors)model in precision,recall,and F1-score,highlighting the proposed approach’s scalability,potential,adaptability,and real-world applicability.Therefore,this paper proposes a highly efficient deployment strategy for resource-constrained network edges.The results reveal that Precision,Recall,and F1-scores rise 10%-30% for the benign,probing,and Denial of Service(DoS)classes.In particular,the DoS,probe,and benign classes improved their F1-scores by 7.91%,32.62%,and 12.45%,respectively.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu...Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
In the bearings-only target tracking, wireless sensor network (WSN) collects observations of the target direction at various nodes and uses an adaptive filter to combine them for target tracking. An efficient networ...In the bearings-only target tracking, wireless sensor network (WSN) collects observations of the target direction at various nodes and uses an adaptive filter to combine them for target tracking. An efficient network management is necessary to gain an optimal tradeoffbetween locating accuracy and energy consumption. This article proposes a self-organizing target tracking algorithm to select the most beneficial subset of nodes to track the target at every snapshot. Compared with traditional methods, this scheme avoids the need for keeping global position information of the network as in greedy selection. Each node judges its future usefulness depending on the knowledge of its own position and using simple mathematics computation. Simulations indicate that this scheme has locating accuracy comparable to the global greedy algorithm. Also, it has good robustness against node failure and autonomous adaptability to the change of the network scale. Furthermore, this algorithm consumes limited energy because only a portion of nodes partakes in the selection at every snapshot.展开更多
A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect...A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the p...Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel.展开更多
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis...Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
文摘Decoupling of revenues with network traffic and extreme penetration of expenses in wireless network leads to the critical situation for wireless service providers (WSP), as more wireless network is complex due to its heterogeneity in the context of planning, software & hardware installation, radio parameters setting, drive testing, optimization, healing and maintenance. These operations are time-consuming, labor & budget-intensive and error-prone if activated manually. Hence new approaches have to be designed and applied to meet those demands in a cost-effective way, Self-organizing networks (SON), is a promising approach to handle manual tasks with autonomous manners. More specifically the self-directed functions (self-planning, self-deployment, self-configuration, self-optimization and self-healing) are aid to reduce capital expenditure (CAPEX), implementation expenditure (IMPEX) and operational expenditure (OPEX). In this study, first we investigate the aforementioned impact factors of cost combined with self-functions. Then, we analyze the relative cost benefits causing from deploying the SON functions, using the economical method to have more precise results concerning those potential benefits. At last, the result shows that there is a significant difference in expenses and revenues of WSP with and without SON after enabling self-functions in wireless network.
基金supported by the National Natural Science Foundation of China(No.62401597)the Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Scientific Research Project of National University of Defense Technology,China(No.ZK22-02)。
文摘The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
文摘For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC).
基金supported by the Scientific Research Foundation of Nanjing Institute of Technology(No.YKJ202425)the National Natural Science Foundation of China(No.72301130).
文摘The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems.
基金Researcher Supporting Project number(RSPD2025R582),King Saud University,Riyadh,Saudi Arabia.
文摘Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few years.These devices are now easy targets for hackers because of their built-in security flaws.Combining a Self-Organizing Map(SOM)hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting(XGBoost)for multi-class classification can improve network traffic intrusion detection.The proposed model is evaluated on the NSL-KDD dataset.The hybrid approach outperforms the baseline line models,Multilayer perceptron model,and SOM-KNN(k-nearest neighbors)model in precision,recall,and F1-score,highlighting the proposed approach’s scalability,potential,adaptability,and real-world applicability.Therefore,this paper proposes a highly efficient deployment strategy for resource-constrained network edges.The results reveal that Precision,Recall,and F1-scores rise 10%-30% for the benign,probing,and Denial of Service(DoS)classes.In particular,the DoS,probe,and benign classes improved their F1-scores by 7.91%,32.62%,and 12.45%,respectively.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金supported by the National Key R&D Program of China (GrantN o.2016YFC0401407)National Natural Science Foundation of China (Grant Nos. 51479003 and 51279006)
文摘Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金National Natural Science Foundation of China (60532030) National Science Fund for Distinguished Young Scholars (60625102) Ph.D. Programs Foundation of Ministry of Education of China (200802240)
文摘In the bearings-only target tracking, wireless sensor network (WSN) collects observations of the target direction at various nodes and uses an adaptive filter to combine them for target tracking. An efficient network management is necessary to gain an optimal tradeoffbetween locating accuracy and energy consumption. This article proposes a self-organizing target tracking algorithm to select the most beneficial subset of nodes to track the target at every snapshot. Compared with traditional methods, this scheme avoids the need for keeping global position information of the network as in greedy selection. Each node judges its future usefulness depending on the knowledge of its own position and using simple mathematics computation. Simulations indicate that this scheme has locating accuracy comparable to the global greedy algorithm. Also, it has good robustness against node failure and autonomous adaptability to the change of the network scale. Furthermore, this algorithm consumes limited energy because only a portion of nodes partakes in the selection at every snapshot.
文摘A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
文摘Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel.
基金supported by the National Natural Science Foundation of China(61890930-5,61533002,61603012)the Major Science and Technology Program for Water Pollution Control and Treatment of China(2018ZX07111005)+1 种基金the National Key Research and Development Project(2018YFC1900800-5)Beijing Municipal Education Commission Foundation(KM201710005025)
文摘Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.