In this paper, transmission power control problem for uplink LTE network is investigated and a new autonomic uplink power control scheme was proposed based on utility function, which is a self- organized algorithm. Th...In this paper, transmission power control problem for uplink LTE network is investigated and a new autonomic uplink power control scheme was proposed based on utility function, which is a self- organized algorithm. The whole approach is based on the economic concept named utility function. Then a self-organized algorithm is distributed in each mobile users to control the transmission power and to maximize the transmission utility. The proposed scheme is solved through the Lagrange multiplier technique. It is proved that the utility function based algorithm optimal power level can be model. is applicable and the achieved based on our展开更多
To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SO...To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.展开更多
In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm ...In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.展开更多
For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target pro...For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC).展开更多
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A...The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.展开更多
This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning(DISOMP)algorithm for multiple Unmanned Aerial...This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning(DISOMP)algorithm for multiple Unmanned Aerial Vehicles(multi-UAV). The DISOMP algorithm can be divided into four modules: a search module designed based on the distributed Ant Colony Optimization(ACO) algorithm, an attack module designed based on the Parallel Approach(PA)scheme, a threat avoidance module designed based on the Dubins Curve(DC) and a communication module designed for information exchange among the multi-UAV system and the dynamic environment. A series of simulations of multi-UAV searching and attacking the moving targets are carried out, in which the search-attack mission completeness, execution efficiency and system suitability of the DISOMP algorithm are analyzed. The simulation results exhibit that the DISOMP algorithm based on online distributed down-top strategy is characterized by good flexibility, scalability and adaptability, in the dynamic targets searching and attacking problem.展开更多
Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution tech...Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution technology for axiomatic design is proposed, so that the constraint relations between mechanical parts could be expressed in a semantic form which is more suitable for designers. By describing the evolution rules for semantic constraint information, the abstract expression of design semantics in mechanical product evolution process is realized and the constraint relations between parts are mapped to the geometric level from the semantic level; With semantic feature relation graph, the abstract semantic description, the semantic relative structure and the semantic constraint information are linked together; And the methods of semantic feature self-organized evolution are classified. Finally, combining a design example of domestic high-speed elevator, how to apply the theory to practical product development is illustrated and this method and its validity is described and verified. According to the study results, the designers are able to represent the design intents at an advanced semantic level in a more intuitional and natural way and the automation, recursion and visualization for mechanical product axiomatic design are also realized.展开更多
In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public k...In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different de...In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different deposition times using a facile magnetron sputtering deposition system. The ratios of methane concentration(CH4/Ar+CH4) used in the experiments are 20%, 40%, and 60%, and the deposition times are 5 minutes, 20 minutes, and 40 minutes, respectively.Despite the difference in the growth conditions, self-organizing multilayered copper-carbon films are prepared at different deposition times by changing methane concentration. The film composition and microstructure are investigated by x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), and high-resolution transmission electron microscopy(HRTEM). By comparing the composition and microstructure of three serial films, the optimal growth conditions and compositions for self-organizing nano-multilayers in copper-carbon film are acquired. The results demonstrate that the self-organized nano-multilayered structure prefers to form in two conditions during the deposition process. One is that the methane should be curbed at low concentration for long deposition time,and the other condition is that the methane should be controlled at high concentration for short deposition time. In particular, nano-multilayered structure is self-organized in the copper-carbon film with copper concentration of 10-25 at.%.Furthermore, an interesting microstructure transition phenomenon is observed in copper-carbon films, that is, the nanomultilayered structure is gradually replaced by a nano-composite structure with deposition time and finally covered by amorphous carbon.展开更多
A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the expone...A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.展开更多
The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we int...The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.展开更多
A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we co...A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system.展开更多
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an expo...In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.展开更多
Silicon is being investigated extensively as an anodic material for next-generation lithium ion batteries for portable energy storage and electric vehicles.However,the large changes in volume during cycling lead to th...Silicon is being investigated extensively as an anodic material for next-generation lithium ion batteries for portable energy storage and electric vehicles.However,the large changes in volume during cycling lead to the breakdown of the conductive network in Si anodes and the formation of an unstable solid-electrolyte interface,resulting in capacity fading.Here,we demonstrate nanoparticles with a Si@Mn22.6Si5.4C4@C double-shell structure and the formation of self-organized Si-Mn-C nanocomposite anodes during the lithiation/delithiation process.The anode consists of amorphous Si particles less than 10 nm in diameter and separated by an interconnected conductive/buffer network,which exhibits excellent charge transfer kinetics and charge/discharge performances.A stable specific capacity of 1100 mAh·g-1 at 100 mA·g-1 and a coulombic efficiency of 99.2%after 30 cycles are achieved.Additionally,a rate capacity of 343 mAh·g-1 and a coulombic efficiency of 99.4%at 12000 mA·g-1 are also attainable.Owing to its simplicity and applicability,this strategy for improving electrode performance paves a way for the development of high-performance Si-based anodic materials for lithium ion batteries.展开更多
The self-organized evolution technology of the mechanism kinetic scheme based on axiomatic design is presented. This technology tries to express the constraints between kinetic mechanisms briefly in a semantic form wh...The self-organized evolution technology of the mechanism kinetic scheme based on axiomatic design is presented. This technology tries to express the constraints between kinetic mechanisms briefly in a semantic form which is more familiar to the designers. Through the mapping process between the kinetic chain unit and the unit instance, the evolution from abstract unit to concrete engineering instance is achieved. The subdivision of unit coupling semantics is studied, and the evolution of semantics is finished. Also, the semantic constraints evolution of unit coupling semantics is described. The product structure models with function and assembly meanings are constructed based on the kinematic chain unit and unit coupling. It provides a basis to realize the inheritance and transfer of constraint information from conceptual design to design for assembly (DFA). As the engineering practice result shows, the method can help the engineers express their And the automation, recursion and design intension more clearly and naturally in a high semantic level. visualization of the mechanism kinetic scheme design are realized展开更多
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis...Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.展开更多
A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: dispers...A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.展开更多
文摘In this paper, transmission power control problem for uplink LTE network is investigated and a new autonomic uplink power control scheme was proposed based on utility function, which is a self- organized algorithm. The whole approach is based on the economic concept named utility function. Then a self-organized algorithm is distributed in each mobile users to control the transmission power and to maximize the transmission utility. The proposed scheme is solved through the Lagrange multiplier technique. It is proved that the utility function based algorithm optimal power level can be model. is applicable and the achieved based on our
基金supported by the 863 Program (2015AA01A705)NSFC (61271187)
文摘To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.
基金supported by the National Nature Science Foundation of China(No.60672124)the National High Technology Research and Development Programme the of China(No.2007AA01Z221)
文摘In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.
文摘For optimization algorithms,the most important consideration is their global optimization performance.Our research is conducted with the hope that the algorithm can robustly find the optimal solution to the target problem at a lower computational cost or faster speed.For stochastic optimization algorithms based on population search methods,the search speed and solution quality are always contradictory.Suppose that the random range of the group search is larger;in that case,the probability of the algorithm converging to the global optimal solution is also greater,but the search speed will inevitably slow.The smaller the random range of the group search is,the faster the search speed will be,but the algorithm will easily fall into local optima.Therefore,our method is intended to utilize heuristic strategies to guide the search direction and extract as much effective information as possible from the search process to guide an optimized search.This method is not only conducive to global search,but also avoids excessive randomness,thereby improving search efficiency.To effectively avoid premature convergence problems,the diversity of the group must be monitored and regulated.In fact,in natural bird flocking systems,the distribution density and diversity of groups are often key factors affecting individual behavior.For example,flying birds can adjust their speed in time to avoid collisions based on the crowding level of the group,while foraging birds will judge the possibility of sharing food based on the density of the group and choose to speed up or escape.The aim of this work was to verify that the proposed optimization method is effective.We compared and analyzed the performances of five algorithms,namely,self-organized particle swarm optimization(PSO)-diversity controlled inertia weight(SOPSO-DCIW),self-organized PSO-diversity controlled acceleration coefficient(SOPSO-DCAC),standard PSO(SPSO),the PSO algorithm with a linear decreasing inertia weight(SPSO-LDIW),and the modified PSO algorithm with a time-varying acceleration constant(MPSO-TVAC).
基金Supported by the National Scientific Foundation of China(4080123170873118)+6 种基金the Chinese Academy of Sciences(KZCX2-YW-305-2KSCX2-YW-N-039KZCX2-YW-326-1)the Ministry of Science and Technology of China(2006DFB91912012006BAC08B032006BAC08B062008BAK47B02)~~
文摘The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.
基金supported in part by National Natural Science Foundation of China (Nos. 61741313, 61673209, and 61533008)Jiangsu Six Peak of Talents Program, China (No. KTHY-027)Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No. KYCX18_0303)
文摘This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning(DISOMP)algorithm for multiple Unmanned Aerial Vehicles(multi-UAV). The DISOMP algorithm can be divided into four modules: a search module designed based on the distributed Ant Colony Optimization(ACO) algorithm, an attack module designed based on the Parallel Approach(PA)scheme, a threat avoidance module designed based on the Dubins Curve(DC) and a communication module designed for information exchange among the multi-UAV system and the dynamic environment. A series of simulations of multi-UAV searching and attacking the moving targets are carried out, in which the search-attack mission completeness, execution efficiency and system suitability of the DISOMP algorithm are analyzed. The simulation results exhibit that the DISOMP algorithm based on online distributed down-top strategy is characterized by good flexibility, scalability and adaptability, in the dynamic targets searching and attacking problem.
基金National Natural Science Foundation of China (No.50505044)National Hi-tech Research and Development Program of China (863 Program,No.2007AA04Z 190)
文摘Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution technology for axiomatic design is proposed, so that the constraint relations between mechanical parts could be expressed in a semantic form which is more suitable for designers. By describing the evolution rules for semantic constraint information, the abstract expression of design semantics in mechanical product evolution process is realized and the constraint relations between parts are mapped to the geometric level from the semantic level; With semantic feature relation graph, the abstract semantic description, the semantic relative structure and the semantic constraint information are linked together; And the methods of semantic feature self-organized evolution are classified. Finally, combining a design example of domestic high-speed elevator, how to apply the theory to practical product development is illustrated and this method and its validity is described and verified. According to the study results, the designers are able to represent the design intents at an advanced semantic level in a more intuitional and natural way and the automation, recursion and visualization for mechanical product axiomatic design are also realized.
基金Supported by the National Natural Science Funda-tion of China (60403027)
文摘In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金supported by the National Natural Science Foundation of China(Grant Nos.51472250,U1637204,and 51775537)
文摘In order to clarify the influence of methane concentration and deposition time on self-organized nano-multilayers,three serial copper-carbon films have been prepared at various methane concentrations with different deposition times using a facile magnetron sputtering deposition system. The ratios of methane concentration(CH4/Ar+CH4) used in the experiments are 20%, 40%, and 60%, and the deposition times are 5 minutes, 20 minutes, and 40 minutes, respectively.Despite the difference in the growth conditions, self-organizing multilayered copper-carbon films are prepared at different deposition times by changing methane concentration. The film composition and microstructure are investigated by x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), and high-resolution transmission electron microscopy(HRTEM). By comparing the composition and microstructure of three serial films, the optimal growth conditions and compositions for self-organizing nano-multilayers in copper-carbon film are acquired. The results demonstrate that the self-organized nano-multilayered structure prefers to form in two conditions during the deposition process. One is that the methane should be curbed at low concentration for long deposition time,and the other condition is that the methane should be controlled at high concentration for short deposition time. In particular, nano-multilayered structure is self-organized in the copper-carbon film with copper concentration of 10-25 at.%.Furthermore, an interesting microstructure transition phenomenon is observed in copper-carbon films, that is, the nanomultilayered structure is gradually replaced by a nano-composite structure with deposition time and finally covered by amorphous carbon.
文摘A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.
基金Supported by the National Natural Science Foundation of China under Grant No.10675060
文摘The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.
基金Supported by National Natural Science Foundation of China under Grant No.10675060the Doctoral Foundation of Ministry of Education of China under Grant No.2002055009
文摘A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system.
基金supported by the Key Project of National Natural Science Foundation of China under Grant No.40730842the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KZCX2-YW-201the Postdoctoral Special Fund for the Innovation Program of the Shandong Province
文摘In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
基金supported by the Major Program of Beijing Municipal Natural Science Foundation(No.2110001)the National Natural Science Foundation of China(No.11179001)the National High Technology Research and Development Program(No.2012AA052201)
文摘Silicon is being investigated extensively as an anodic material for next-generation lithium ion batteries for portable energy storage and electric vehicles.However,the large changes in volume during cycling lead to the breakdown of the conductive network in Si anodes and the formation of an unstable solid-electrolyte interface,resulting in capacity fading.Here,we demonstrate nanoparticles with a Si@Mn22.6Si5.4C4@C double-shell structure and the formation of self-organized Si-Mn-C nanocomposite anodes during the lithiation/delithiation process.The anode consists of amorphous Si particles less than 10 nm in diameter and separated by an interconnected conductive/buffer network,which exhibits excellent charge transfer kinetics and charge/discharge performances.A stable specific capacity of 1100 mAh·g-1 at 100 mA·g-1 and a coulombic efficiency of 99.2%after 30 cycles are achieved.Additionally,a rate capacity of 343 mAh·g-1 and a coulombic efficiency of 99.4%at 12000 mA·g-1 are also attainable.Owing to its simplicity and applicability,this strategy for improving electrode performance paves a way for the development of high-performance Si-based anodic materials for lithium ion batteries.
文摘The self-organized evolution technology of the mechanism kinetic scheme based on axiomatic design is presented. This technology tries to express the constraints between kinetic mechanisms briefly in a semantic form which is more familiar to the designers. Through the mapping process between the kinetic chain unit and the unit instance, the evolution from abstract unit to concrete engineering instance is achieved. The subdivision of unit coupling semantics is studied, and the evolution of semantics is finished. Also, the semantic constraints evolution of unit coupling semantics is described. The product structure models with function and assembly meanings are constructed based on the kinematic chain unit and unit coupling. It provides a basis to realize the inheritance and transfer of constraint information from conceptual design to design for assembly (DFA). As the engineering practice result shows, the method can help the engineers express their And the automation, recursion and design intension more clearly and naturally in a high semantic level. visualization of the mechanism kinetic scheme design are realized
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
基金supported by the National Natural Science Foundation of China(61890930-5,61533002,61603012)the Major Science and Technology Program for Water Pollution Control and Treatment of China(2018ZX07111005)+1 种基金the National Key Research and Development Project(2018YFC1900800-5)Beijing Municipal Education Commission Foundation(KM201710005025)
文摘Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.
基金the National Natural Science Foundation of China (70572045).
文摘A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.