Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compres...Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples.展开更多
To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive l...To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.展开更多
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod...The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.展开更多
Mobile ad hoc networks(MANETs),which correspond to a novel wireless technology,are widely used in Internet of Things(IoT)systems such as drones,wireless sensor networks,and military or disaster relief communication.Fr...Mobile ad hoc networks(MANETs),which correspond to a novel wireless technology,are widely used in Internet of Things(IoT)systems such as drones,wireless sensor networks,and military or disaster relief communication.From the perspective of communication and data collection,the success rate of collaborations between nodes in mobile ad hoc networks and reliability of data collection mainly depend on whether the nodes in the network operate normally,namely,according to the established network rules.However,mobile ad hoc networks are vulnerable to attacks targeting transmission channels and nodes owing to their dynamic evolution,openness,and distributed characteristics.Therefore,during the network operation,it is necessary to classify and detect the behavior and characteristics of each node.However,most existing research only analyzes and considers responses against a single or small number of attacks.To address these issues,this article first systematically analyzed and classified common active attacks in MANETs.Then,a node trust model was proposed based on the characteristics of various attacks;subsequently,a new secure routing protocol,namely,TC-AODV,was proposed.This protocol has minimal effect on the original communication dynamics and can effectively deal with Packet drop,wormhole,Session hijacking,and other main attacks in MANETs.The NS3 simulation results show that the proposed routing protocol attains good transmission performance,can effectively identify various attacks and bypass malicious nodes,and securely complete the communication process.展开更多
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A...The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic ...In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
We propose a model of weighted networks in which the structural evolution is coupled with weight dynamics. Based on a simple merging and regeneration process, the model gives powel-law distributions of degree, strengt...We propose a model of weighted networks in which the structural evolution is coupled with weight dynamics. Based on a simple merging and regeneration process, the model gives powel-law distributions of degree, strength and weight, as observed in many real networks. It should be emphasized that, in our model, the nontrivial degree-strength correlation can be reproduced and in agreement with empirical data. Moreover, the size-growing evolution model is also presented to meet the properties of real-world systems.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Through literature research, field research and urban design analysis methods, based on the self-organization theory, the evolution characteristics of the settlement space of Anju Ancient Town with significant charact...Through literature research, field research and urban design analysis methods, based on the self-organization theory, the evolution characteristics of the settlement space of Anju Ancient Town with significant characteristics of traditional mountain settlements were analyzed, and then its internal and external influencing factors were summarized. Finally, appropriate protection and development strategies were proposed, such as reasonably planning functional zones, breaking through the single structure, and creating a good living cultural environment. The innovation of this study is that it integrates the self-organization theory into the cognition of traditional mountain settlement space, and discusses the connection between the mountain settlement space and the traditional regional context under the modern development concept, so as to seek the benign protection and reasonable development of traditional mountain settlement space.展开更多
In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution wi...In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result,展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models...For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.展开更多
文摘Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples.
文摘To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.
基金supported by the National Natural Science Foundation of China(No.62401597)the Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Scientific Research Project of National University of Defense Technology,China(No.ZK22-02)。
文摘The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.
基金supported in part by the National Key Research and Development Project of China(2019YFB2102303)the National Natural Science Foundation of China(61971014).
文摘Mobile ad hoc networks(MANETs),which correspond to a novel wireless technology,are widely used in Internet of Things(IoT)systems such as drones,wireless sensor networks,and military or disaster relief communication.From the perspective of communication and data collection,the success rate of collaborations between nodes in mobile ad hoc networks and reliability of data collection mainly depend on whether the nodes in the network operate normally,namely,according to the established network rules.However,mobile ad hoc networks are vulnerable to attacks targeting transmission channels and nodes owing to their dynamic evolution,openness,and distributed characteristics.Therefore,during the network operation,it is necessary to classify and detect the behavior and characteristics of each node.However,most existing research only analyzes and considers responses against a single or small number of attacks.To address these issues,this article first systematically analyzed and classified common active attacks in MANETs.Then,a node trust model was proposed based on the characteristics of various attacks;subsequently,a new secure routing protocol,namely,TC-AODV,was proposed.This protocol has minimal effect on the original communication dynamics and can effectively deal with Packet drop,wormhole,Session hijacking,and other main attacks in MANETs.The NS3 simulation results show that the proposed routing protocol attains good transmission performance,can effectively identify various attacks and bypass malicious nodes,and securely complete the communication process.
基金Supported by the National Scientific Foundation of China(4080123170873118)+6 种基金the Chinese Academy of Sciences(KZCX2-YW-305-2KSCX2-YW-N-039KZCX2-YW-326-1)the Ministry of Science and Technology of China(2006DFB91912012006BAC08B032006BAC08B062008BAK47B02)~~
文摘The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金supported by National Natural Science Foundation of China (No. 60674081,No. 60834002,No. 61074145)
文摘In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金Supported by the National 0utstanding Young Investigator Foundation of China under Grant No 70225005, the National Natural Science Foundation of China under Grant No 70471088.
文摘We propose a model of weighted networks in which the structural evolution is coupled with weight dynamics. Based on a simple merging and regeneration process, the model gives powel-law distributions of degree, strength and weight, as observed in many real networks. It should be emphasized that, in our model, the nontrivial degree-strength correlation can be reproduced and in agreement with empirical data. Moreover, the size-growing evolution model is also presented to meet the properties of real-world systems.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金the General Project of National Natural Science Foundation of China(51778078)General Project of Natural Science Foundation of Chongqing City(cstc2021jcyj-msxmX1055).
文摘Through literature research, field research and urban design analysis methods, based on the self-organization theory, the evolution characteristics of the settlement space of Anju Ancient Town with significant characteristics of traditional mountain settlements were analyzed, and then its internal and external influencing factors were summarized. Finally, appropriate protection and development strategies were proposed, such as reasonably planning functional zones, breaking through the single structure, and creating a good living cultural environment. The innovation of this study is that it integrates the self-organization theory into the cognition of traditional mountain settlement space, and discusses the connection between the mountain settlement space and the traditional regional context under the modern development concept, so as to seek the benign protection and reasonable development of traditional mountain settlement space.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60374037 and 60574036), the Program for New Century Excellent Talents of High Education of China(Grant No NCET 2005-290), The Special Research Fund for the Doctoral Program of High Education of China (Grant No 20050055013).Acknowledgments The authors would like to thank Réka Albert for useful discussion and are grateful to the anonymous referees for their valuable suggestions and comments, which have made this paper improved.
文摘In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result,
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by the Beijing Natural Science Foundation(Grant No.L223013)。
文摘For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management.