The Songliao Basin in northeast China is one of the largest petroliferous basins worldwide,and features the T_(2)fault system,which consists of numerous minor extensional normal faults.This study combines high-resolut...The Songliao Basin in northeast China is one of the largest petroliferous basins worldwide,and features the T_(2)fault system,which consists of numerous minor extensional normal faults.This study combines high-resolution 3D seismic datasets to detail the characteristics of the T_(2)fault system,contributing two key findings:(1)The T_(2)faults are confirmed as polygonal fault systems,characterized by closely spaced,layer-bounded faults with small throws,high dip angles,and random orientations,forming intricate polygonal networks.(2)The study reveals the influence of tectonic stresses on the fault system,showing spatial variations across different tectonic units.In depressions,T_(2)faults exhibit short lengths,small throws,high density,and multiple directions.In contrast,in inverted anticline belts,they have longer lengths,bigger throws,higher density,and concordant orientations.These variations demonstrate the impact of tectonic inversion on the development of T_(2)faults.The significance of this research lies in presenting a typical polygonal fault system developed in a deep lake succession and was superposed the influence by regional tectonic stress coeval with its development.The new insights facilitate a reevaluation of the T_(2)fault system's role in hydrocarbon migration and accumulation within the Songliao Basin.展开更多
The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limit...The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
The contour of the slices of SLA parts is composed of a great deal of small lines. When offsetting the contour to compensate for the radius of laser spot, many self-intersection contours come into being, which decreas...The contour of the slices of SLA parts is composed of a great deal of small lines. When offsetting the contour to compensate for the radius of laser spot, many self-intersection contours come into being, which decrease the precision of formed parts. A new lemma to judge the local self-intersection contour and the global self-intersection contour separately is put forward, according to which self-intersection contour can be removed reliably. Meanwhile, a new beam offsetting algorithm for SLA parts is described, which brings about good resuits in the practical manufacturing process.展开更多
The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are ...The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are the reduced density matrices of generalizedW-class states in multipartite higher dimensional systems.First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-q entanglement,then we propose a class of tighter inequalities for mixed states in terms of Tsallis-q entanglement.At last,we get an inequality for the mixed states,which can be regarded as a relation for bipartite entanglement.展开更多
Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to meas...Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.展开更多
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
为了克服开放街道地图数据的空间异质性特征对其在数据匹配、更新等方面应用所造成的影响,提出一种基于指标相关性的指标权重确定算法(Criteria Importan ce Through Inter-criteria Correlation,简称CRITIC)的开放街道地图面实体匹配...为了克服开放街道地图数据的空间异质性特征对其在数据匹配、更新等方面应用所造成的影响,提出一种基于指标相关性的指标权重确定算法(Criteria Importan ce Through Inter-criteria Correlation,简称CRITIC)的开放街道地图面实体匹配方法。该方法充分考虑开放街道地图数据的空间异质性,在开放街道地图中面实体与其他数据进行匹配时,引入CRITIC算法计算开放街道地图数据中每个面要素几何相似因子的权重,避免了对匹配数据集中的所有面实体采用相同的相似因子权重,减少了人为定权方法所带来的主观性及局限性,提高了开放街道地图面实体与其他数据集的匹配精度。实验结果表明,该方法有效地克服了开放街道地图数据的空间异质性特点对匹配精度的影响,提升了开放街道地图中面实体与其他面实体数据的匹配精度,匹配的准确率、召回率和F1分数分别达到97.56%、98.04%和97.80%,均优于对比方法。展开更多
路基工后沉降直接关乎公路的安全性能,蠕变行为的预测对保障路基工程的长期安全具有重要意义。对蠕变行为进行有限元数值模拟时,复杂结构模型的网格划分需要耗费大量的计算资源,且计算量大计算时间长。提出了一种考虑蠕变的任意多边形...路基工后沉降直接关乎公路的安全性能,蠕变行为的预测对保障路基工程的长期安全具有重要意义。对蠕变行为进行有限元数值模拟时,复杂结构模型的网格划分需要耗费大量的计算资源,且计算量大计算时间长。提出了一种考虑蠕变的任意多边形杂交应力新单元(polygonal hybrid stress element method,PHSEM),用于工程中的路基沉降问题研究。基于杂交应力元法及路基土的蠕变行为,推导PHSEM的单元基本格式,分析表明该单元引入了高阶应力场,能更好地提高计算精度,进一步建立路基蠕变的数值计算模型,结合有限元软件MARC开展对比分析。研究表明:PHSEM的数值仿真曲线拟合良好,验证了考虑蠕变的任意多边形杂交应力单元的有效性;PHSEM在划分网格时形状可以是任意边数的多边形,能够很好地模拟多种介质的路基模型,真实地计算出不同部位的应力分布情况;PHSEM的构造为实际工程中的蠕变研究提供了一种可参考的新思路。展开更多
基金supported by the Open Funds for Hubei Key Laboratory of Marine Geological Resources,China University of Geosciences(No.MGR202303)the National Natural Science Foundation of China(No.41672110)。
文摘The Songliao Basin in northeast China is one of the largest petroliferous basins worldwide,and features the T_(2)fault system,which consists of numerous minor extensional normal faults.This study combines high-resolution 3D seismic datasets to detail the characteristics of the T_(2)fault system,contributing two key findings:(1)The T_(2)faults are confirmed as polygonal fault systems,characterized by closely spaced,layer-bounded faults with small throws,high dip angles,and random orientations,forming intricate polygonal networks.(2)The study reveals the influence of tectonic stresses on the fault system,showing spatial variations across different tectonic units.In depressions,T_(2)faults exhibit short lengths,small throws,high density,and multiple directions.In contrast,in inverted anticline belts,they have longer lengths,bigger throws,higher density,and concordant orientations.These variations demonstrate the impact of tectonic inversion on the development of T_(2)faults.The significance of this research lies in presenting a typical polygonal fault system developed in a deep lake succession and was superposed the influence by regional tectonic stress coeval with its development.The new insights facilitate a reevaluation of the T_(2)fault system's role in hydrocarbon migration and accumulation within the Songliao Basin.
基金financially supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.24qnpy041)the Science and Technology Innovation Key R&D Program of Chongqing(Grant No.CSTB2023TIAD-STX0030)。
文摘The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘The contour of the slices of SLA parts is composed of a great deal of small lines. When offsetting the contour to compensate for the radius of laser spot, many self-intersection contours come into being, which decrease the precision of formed parts. A new lemma to judge the local self-intersection contour and the global self-intersection contour separately is put forward, according to which self-intersection contour can be removed reliably. Meanwhile, a new beam offsetting algorithm for SLA parts is described, which brings about good resuits in the practical manufacturing process.
基金Project supported by the National Natural Science Foundation of China(Grant No.12301580).
文摘The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are the reduced density matrices of generalizedW-class states in multipartite higher dimensional systems.First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-q entanglement,then we propose a class of tighter inequalities for mixed states in terms of Tsallis-q entanglement.At last,we get an inequality for the mixed states,which can be regarded as a relation for bipartite entanglement.
基金the Sichuan Science and Technology Program of China(No.2024NSFSC0160).
文摘Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
文摘为了克服开放街道地图数据的空间异质性特征对其在数据匹配、更新等方面应用所造成的影响,提出一种基于指标相关性的指标权重确定算法(Criteria Importan ce Through Inter-criteria Correlation,简称CRITIC)的开放街道地图面实体匹配方法。该方法充分考虑开放街道地图数据的空间异质性,在开放街道地图中面实体与其他数据进行匹配时,引入CRITIC算法计算开放街道地图数据中每个面要素几何相似因子的权重,避免了对匹配数据集中的所有面实体采用相同的相似因子权重,减少了人为定权方法所带来的主观性及局限性,提高了开放街道地图面实体与其他数据集的匹配精度。实验结果表明,该方法有效地克服了开放街道地图数据的空间异质性特点对匹配精度的影响,提升了开放街道地图中面实体与其他面实体数据的匹配精度,匹配的准确率、召回率和F1分数分别达到97.56%、98.04%和97.80%,均优于对比方法。
文摘路基工后沉降直接关乎公路的安全性能,蠕变行为的预测对保障路基工程的长期安全具有重要意义。对蠕变行为进行有限元数值模拟时,复杂结构模型的网格划分需要耗费大量的计算资源,且计算量大计算时间长。提出了一种考虑蠕变的任意多边形杂交应力新单元(polygonal hybrid stress element method,PHSEM),用于工程中的路基沉降问题研究。基于杂交应力元法及路基土的蠕变行为,推导PHSEM的单元基本格式,分析表明该单元引入了高阶应力场,能更好地提高计算精度,进一步建立路基蠕变的数值计算模型,结合有限元软件MARC开展对比分析。研究表明:PHSEM的数值仿真曲线拟合良好,验证了考虑蠕变的任意多边形杂交应力单元的有效性;PHSEM在划分网格时形状可以是任意边数的多边形,能够很好地模拟多种介质的路基模型,真实地计算出不同部位的应力分布情况;PHSEM的构造为实际工程中的蠕变研究提供了一种可参考的新思路。