With blended learning emerging as a mainstream paradigm in higher education,the Document Security Technology course faces persistent challenges,including vague instructional objectives and low learning efficiency.Simu...With blended learning emerging as a mainstream paradigm in higher education,the Document Security Technology course faces persistent challenges,including vague instructional objectives and low learning efficiency.Simultaneously,the profession demands stronger self-directed learning capabilities from practitioners.To address these issues,this study develops a“Five-in-One”self-directed learning model comprising five interrelated dimensions:goal orientation,instructional regulation,cognitive development,technological resources,and process monitoring.The application of this model has significantly improved course evaluation outcomes,enhanced faculty teaching and research capacity,strengthened students’practical and innovative skills,and expanded the course’s reach and social impact.The model thus provides both a theoretical framework and a practical pathway for the reform of similar applied courses.展开更多
This study explored the role of learning engagement in the relationship between academic self-efficacy and self-directed learning ability among nursing students.Participants were 328 Chinese nursing students(male=11.3...This study explored the role of learning engagement in the relationship between academic self-efficacy and self-directed learning ability among nursing students.Participants were 328 Chinese nursing students(male=11.3%,female=88.7%;mean age=20.86 years;SD=1.75 years).The participants completed surveys on academic self-efficacy(Academic Self-efficacy Scale),learning engagement(Learning Engagement Scale),and self-directed learning ability(Self-directed Learning Instrument).Hayes regression-based PROCESS macro analysis revealed that learning engagement mediated the relationship between academic self-efficacy and self-directed learning ability.The hierarchical regression analysis showed higher academic self-efficacy to be associated with self-directed learning ability.Additionally learning engagement was associated with higher self-directed learning ability.Based on thesefindings,there is a need for interventions to improve students’self-directed learning ability through increasing their academic self-efficacy and enhancing learning engagement.展开更多
In the information age,blended teaching,no matter online or offline,has become the mainstream of college teaching reform.In this teaching model,self-directed learning and cooperative learning are the two main learning...In the information age,blended teaching,no matter online or offline,has become the mainstream of college teaching reform.In this teaching model,self-directed learning and cooperative learning are the two main learning approaches.On the online teaching platform,students mainly learn knowledge-based content by self-directed learning,while practising their language skills by cooperative learning in flipped classroom activities.On one hand,it advocates student-centered strategy so as to improve students autonomous learning ability;on the other hand,teachers serve as a guide to organize the classroom activities;meanwhile,they give timely feedback to students in order to promote students’learning ability.In blended teaching model,this mutually compatible and reinforcing model of self-directed learning and cooperative learning is undoubtedly helpful to improve the teaching efficiency.展开更多
Objective: The purposes of this study were to analyze the influencing factors of self-directed learning readiness(SDLR) of nursing undergraduates and explore the impacts of learning attitude and self-efficacy on nursi...Objective: The purposes of this study were to analyze the influencing factors of self-directed learning readiness(SDLR) of nursing undergraduates and explore the impacts of learning attitude and self-efficacy on nursing undergraduates.Methods: A total of 500 nursing undergraduates were investigated in Tianjin, with the Chinese version of SDLR scale, learning attitude questionnaire of nursing college students, academic self-efficacy scale, and the general information questionnaire.Result: The score of SDLR was 149.99±15.73. Multiple stepwise regressions indicated that academic self-efficacy, learning attitude, attitudes to major of nursing, and level of learning difficulties were major influential factors and explained 48.1% of the variance in SDLR of nursing interns.Conclusions: The score of SDLR of nursing undergraduates is not promising. It is imperative to correct students' learning attitude, improve self-efficacy, and adopt appropriate teaching model to improve SDLR.展开更多
Objectives: To examine the best practice evidence of the effectiveness of the flipped classroom(FC) as a burgeoning teaching model on the development of self-directed learning in nursing education.Data sources: The ...Objectives: To examine the best practice evidence of the effectiveness of the flipped classroom(FC) as a burgeoning teaching model on the development of self-directed learning in nursing education.Data sources: The relevant randomized controlled trial(RCT) and non-RCT comparative studies were searched from multiple electronic databases including PubMed, Embase, Web of Science, Cumulative Index to Nursing and Allied Health Literature(CINAHL), Cochrane Central Register of Controlled Trials(CENTRAL), Wanfang Data, China National Knowledge Infrastructure(CNKI), and Chinese Science and Technology Periodical Database(VIP) from inception to June 2017.Review methods: The data were independently assessed and extracted for eligibility by two reviewers. The quality of included studies was assessed by another two reviewers using a standardized form and evaluated by using the Cochrane Collaboration’s risk of bias tool. The self-directed learning scores(continuous outcomes) were analyzed by using the 95% confidence intervals(Cls) with the standard deviation average(SMD) or weighted mean difference(WMD). The heterogeneity was assessed using Cochran’s I;statistic.Results: A total of 12 studies, which encompassed 1440 nursing students(intervention group = 685, control group = 755), were eligible for inclusion in this review. Of 12 included studies, the quality level of one included study was A and of the others was B. The pooled effect size showed that compared with traditional teaching models, the FC could improve nursing students’ selfdirected learning skill, as measured by the Self-Directed Learning Readiness Scale(SDLRS), Self-Directed Learning Readiness Scale for Nursing Education(SDLRSNE), Self-Regulated Learning Scale(SRL), Autonomous Learning Competencies scale(ALC), and Competencies of Autonomous Learning of Nursing Students(CALNS). Overall scores and subgroup analyses with the SRL were all in favor of the FC.Conclusions: The result of this meta-analysis indicated that FCs could improve the effect of self-directed learning in nursing education.Future studies with more RCTs using the same measurement tools are needed to draw more authoritative conclusions.展开更多
Aims:We examined the relationship between self-directed learning readiness(SDLR)and nursing competency among undergraduate nursing students.Background:There is little evidence-based data related to the relationship be...Aims:We examined the relationship between self-directed learning readiness(SDLR)and nursing competency among undergraduate nursing students.Background:There is little evidence-based data related to the relationship between selfdirected learning(SDL)and nursing competency.Methods:A descriptive correlational design was used.We conducted convenience sampling of 519 undergraduate nursing students from three universities during their final period of clinical practice.We investigated SDL according to the SDLR scale for nursing education(Chinese translation version),and used the Competency Inventory for Registered Nurses to evaluate nursing competency.Results:The mean SDLR score of the students was 148.55(standard deviation[SD]18.46),indicating intermediate and higher SDLR.The mean score for nursing competency was 142.31(SD30.39),indicating intermediate nursing competence.SDLR had a significant positive and strong relationship with nursing competency.Conclusion:SDLR is a predictor of nursing competency.展开更多
Objective: Problem-solving should be a fundamental component of nursing education because It is a core ability for professional nurses. For more effective learning, nursing students must understand the relationship be...Objective: Problem-solving should be a fundamental component of nursing education because It is a core ability for professional nurses. For more effective learning, nursing students must understand the relationship between self-directed learning readiness and problem-solving ability. The aim of this study was to investigate the relationships among self-directed learning readiness, problemsolving ability, and academic self-efficacy among undergraduate nursing students.Methods: From November to December 2016, research was conducted among 500 nursing undergraduate students in Tianjin, China,using a self-directed learning readiness scale, an academic self-efficacy scale, a questionnaire related to problem-solving, and selfdesigned demographics. The response rate was 85.8%.Results: For Chinese nursing students, self-directed learning readiness and academic self-efficacy reached a medium-to-high level,while problem-solving abilities were at a low level. There were significant positive correlations among the students' self-directed learning readiness, academic self-efficacy, and problem-solving ability. Furthermore, academic self-efficacy demonstrated a mediating effect on the relationship between the students' self-directed learning readiness and problem-solving ability.Conclusions: To enhance students' problem-solving ability, nursing educators should pay more attention to the positive impact of self-directed learning readiness and self-efficacy in nursing students' education.展开更多
Objective The aims of this study were to describe nursing students′self-directed learning readiness and social problem solving and test their correlations in Macao.Methods This descriptive cross-sectional study was c...Objective The aims of this study were to describe nursing students′self-directed learning readiness and social problem solving and test their correlations in Macao.Methods This descriptive cross-sectional study was conducted on 140baccalaureate nursing students.A stratified random sampling was performed.The Self-directed Learning Readiness(SDLR)Scale and Chinese Social Problem-Solving Inventory-Revised(C-SPSI-R)were used.Results The response rate was 79.3%.Students possessed readiness for self-directed learning(mean 149.09±12.53,51.4%at high level,48.6%at low level).Regarding to social problem solving,the mean scores of each subscale were 9.35±3.25(Rational Problem Solving,RPS),10.26±3.23(Positive Problem Orientation,PPO),8.14±4.06(Negative Problem Orientation,NPO),5.67±4.44(Avoidance Style,AS),and 4.84±3.03(Impulsivity/Carelessness Style,ICS).SDLR was positively related to RPS and PPO,but was negatively related to AS.Conclusion Half of students possessed stronger readiness for self-directed learning.Students had a belief in the ability to solve problems,and adopted relevant strategies in solving problems.However,students still had negative and dysfunctional orientation and defective attempts in solving problems.Self-directed learning was positively related to positive and constructive orientation,but was negatively related to defective problem-solving pattern.Nurse educators should create educational climates for promoting student confidence and mutual responsibility for learning and their thinking process for problem solving.展开更多
Background: Patients expect nurses to be both technically competent and psychosocially skilled. Enhancing the quality of patient care and patient safety in healthcare settings has increased, resulting in limited oppor...Background: Patients expect nurses to be both technically competent and psychosocially skilled. Enhancing the quality of patient care and patient safety in healthcare settings has increased, resulting in limited opportunities for students to practice clinical skills in healthcare settings. Achieving competence in these skills is viewed as an essential task to be completed during the school curriculum. Objective: The purpose of this study was to evaluate the use of self-observation through cellular recordings as an adjunct to the clinical skills teaching of a blood sugar test to undergraduate nursing. Design: The research design consisted of pre- and post-test consecutive experimental design through a control group. Settings: This study targeted nursing students enrolled in baccalaureate programs running in Korea. Participant: The participants were 64 students including 34 for the experimental group and 30 for the control group. Methods: Those in the control group received standard teaching methods using lectures and skills classes and facilitated the use of self-study methods. Those in the experimental group received standard teaching using lectures and skills classes and facilitated use of cell phone recorded self-observation. The self-confidence of practicing a blood sugar test, satisfaction with the learning method, self-study participation, level of interest in nursing practice, and self-directed learning ability were measured using questionnaires. Results: Significant between-groups differences were detected in self-confidence of practicing a blood sugar test (t = 2.067, p = 0.043), satisfaction with the learning method (t = 2.818, p = 0.044), self-study participation (χ2 = 7.635, p = 0.022), and average self-directed learning ability (t = 3.202, p = 0.002). Conclusions: Self-observation through cellular phone recordings is an effective learning method as an adjunct to teach clinical skills.展开更多
Objective: To explore the effects of self-directed learning readiness and learning attitude on problem-solving ability among Chinese undergraduate nursing students. Methods: A convenience sampling of 460 undergraduate...Objective: To explore the effects of self-directed learning readiness and learning attitude on problem-solving ability among Chinese undergraduate nursing students. Methods: A convenience sampling of 460 undergraduate nursing students was surveyed in Tianjin, China. Students who participated in the study completed a questionnaire that included social demographic questionnaire, Self-directed Learning Readiness Scale, Attitude to Learning Scale, and Social Problem-Solving Inventory. Pearson’s correlation analysis was performed to test the correlations among problem-solving ability, self-directed learning readiness, and learning attitude. Hierarchical linear regression analyses were performed to explore the mediating role of learning attitude. Results: The results showed that learning attitude (r=0.338, P<0.01) and self-directed learning readiness (r=0.493, P<0.01) were positively correlated with problem-solving ability. Learning attitude played a partial intermediary role between self-directed learning readiness and problem-solving ability (F=74.227, P<0.01). Conclusions: It is concluded that nursing educators should pay attention on students’ individual differences and take proper actions to inspire students’ self-directed learning readiness and learning attitude.展开更多
Self-directed learning (SDL) uses diverse learning resources to solve identified problems in learning. Nursing is a lifelong learning profession and SDL is a valuable skill to remain relevant and productive profession...Self-directed learning (SDL) uses diverse learning resources to solve identified problems in learning. Nursing is a lifelong learning profession and SDL is a valuable skill to remain relevant and productive professionals. Nursing students are expected to embrace SDL and develop these skills. However, there has been no evidence of this innovative process in South-West Nigeria. This study seeks to evaluate nursing students’ readiness for SDL and its effect on learning outcome. This quasi-experimental study purposively utilized 229 nursing students as participants. Baseline (P1) data was collected using Gugliemino’s SDL readiness scale (SDLRS) and a validated-structured questionnaire. Participants had a pre-test to assess knowledge at P1 followed by 6 weeks interaction using SDL on selected topics in Medical-surgical nursing and the same test at post-intervention (P2). Using a 50-point scale, knowledge was categorized as good ≥ 25 and poor < 25 and SDLRS on a 290-point scale was categorized as below average 5 - 201, average 202 - 226 and above average 227 - 290. Descriptive statistics, Chi-square test, t-test and linear regression analysis were used for analysis at p = 0.05. Nursing students’ SDLRS was average;mean = 203 ± 23.0. A significant difference exists between nursing students with good knowledge at P1 and P2. At P1, 39.2% had good knowledge, mean = 22.2 ± 6.3, and 90.1% at P2, mean = 30.6 ± 5.4, p < 0.05 also a significant relationship exist between SDLR and learning outcome at P2;p < 0.05. With the nursing students’ average SDL readiness level having a significant effect on learning outcome. Nursing training institutions should provide necessary resources to embrace SDL as a main-line teaching method to ensure competent life-long professionals.展开更多
In China,about 4.74 million Chinese have signed up for the 2023 national exam for postgraduate enrollment.More and more students will pursue a graduate school education.It’s important to note that the self-directed l...In China,about 4.74 million Chinese have signed up for the 2023 national exam for postgraduate enrollment.More and more students will pursue a graduate school education.It’s important to note that the self-directed learning abilities of the students is crucial in the postgraduate entrance exam.Therefore,the study seeks to identify the level of the self-directed learning abilities and psychological capital of the postgraduate school candidates to identify whether there is a significant correlation between the candidates’self-directed learning abilities and psychological capital.展开更多
In China,about 4.74 million Chinese have signed up for the 2023 national exam for postgraduate enrollment.More and more students will pursue a graduate school education.It’s important to note that the self-directed l...In China,about 4.74 million Chinese have signed up for the 2023 national exam for postgraduate enrollment.More and more students will pursue a graduate school education.It’s important to note that the self-directed learning abilities of the students is crucial in the postgraduate entrance exam.Therefore,the study seeks to identify the level of the self-directed learning abilities and psychological capital of the postgraduate school candidates to identify whether there is a significant correlation between the candidates’self-directed learning abilities and psychological capital.展开更多
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top...Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments.展开更多
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi...Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.展开更多
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy...With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.展开更多
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re...The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence.展开更多
基金Hebei Province Higher Education Teaching Reform Research and Practice Program(Project No.:2022GJJG467)。
文摘With blended learning emerging as a mainstream paradigm in higher education,the Document Security Technology course faces persistent challenges,including vague instructional objectives and low learning efficiency.Simultaneously,the profession demands stronger self-directed learning capabilities from practitioners.To address these issues,this study develops a“Five-in-One”self-directed learning model comprising five interrelated dimensions:goal orientation,instructional regulation,cognitive development,technological resources,and process monitoring.The application of this model has significantly improved course evaluation outcomes,enhanced faculty teaching and research capacity,strengthened students’practical and innovative skills,and expanded the course’s reach and social impact.The model thus provides both a theoretical framework and a practical pathway for the reform of similar applied courses.
基金supported by the Medical and Health Communication Research Center of Zigong Academy of Medical Sciences(No.YXJKCB-2024-06)the Demonstration Project for Consolidating the Scientific and Educational Support for Medical Talents(Scientific Research Team for improving the Service Quality of“the Elderly and the Young”).
文摘This study explored the role of learning engagement in the relationship between academic self-efficacy and self-directed learning ability among nursing students.Participants were 328 Chinese nursing students(male=11.3%,female=88.7%;mean age=20.86 years;SD=1.75 years).The participants completed surveys on academic self-efficacy(Academic Self-efficacy Scale),learning engagement(Learning Engagement Scale),and self-directed learning ability(Self-directed Learning Instrument).Hayes regression-based PROCESS macro analysis revealed that learning engagement mediated the relationship between academic self-efficacy and self-directed learning ability.The hierarchical regression analysis showed higher academic self-efficacy to be associated with self-directed learning ability.Additionally learning engagement was associated with higher self-directed learning ability.Based on thesefindings,there is a need for interventions to improve students’self-directed learning ability through increasing their academic self-efficacy and enhancing learning engagement.
文摘In the information age,blended teaching,no matter online or offline,has become the mainstream of college teaching reform.In this teaching model,self-directed learning and cooperative learning are the two main learning approaches.On the online teaching platform,students mainly learn knowledge-based content by self-directed learning,while practising their language skills by cooperative learning in flipped classroom activities.On one hand,it advocates student-centered strategy so as to improve students autonomous learning ability;on the other hand,teachers serve as a guide to organize the classroom activities;meanwhile,they give timely feedback to students in order to promote students’learning ability.In blended teaching model,this mutually compatible and reinforcing model of self-directed learning and cooperative learning is undoubtedly helpful to improve the teaching efficiency.
文摘Objective: The purposes of this study were to analyze the influencing factors of self-directed learning readiness(SDLR) of nursing undergraduates and explore the impacts of learning attitude and self-efficacy on nursing undergraduates.Methods: A total of 500 nursing undergraduates were investigated in Tianjin, with the Chinese version of SDLR scale, learning attitude questionnaire of nursing college students, academic self-efficacy scale, and the general information questionnaire.Result: The score of SDLR was 149.99±15.73. Multiple stepwise regressions indicated that academic self-efficacy, learning attitude, attitudes to major of nursing, and level of learning difficulties were major influential factors and explained 48.1% of the variance in SDLR of nursing interns.Conclusions: The score of SDLR of nursing undergraduates is not promising. It is imperative to correct students' learning attitude, improve self-efficacy, and adopt appropriate teaching model to improve SDLR.
文摘Objectives: To examine the best practice evidence of the effectiveness of the flipped classroom(FC) as a burgeoning teaching model on the development of self-directed learning in nursing education.Data sources: The relevant randomized controlled trial(RCT) and non-RCT comparative studies were searched from multiple electronic databases including PubMed, Embase, Web of Science, Cumulative Index to Nursing and Allied Health Literature(CINAHL), Cochrane Central Register of Controlled Trials(CENTRAL), Wanfang Data, China National Knowledge Infrastructure(CNKI), and Chinese Science and Technology Periodical Database(VIP) from inception to June 2017.Review methods: The data were independently assessed and extracted for eligibility by two reviewers. The quality of included studies was assessed by another two reviewers using a standardized form and evaluated by using the Cochrane Collaboration’s risk of bias tool. The self-directed learning scores(continuous outcomes) were analyzed by using the 95% confidence intervals(Cls) with the standard deviation average(SMD) or weighted mean difference(WMD). The heterogeneity was assessed using Cochran’s I;statistic.Results: A total of 12 studies, which encompassed 1440 nursing students(intervention group = 685, control group = 755), were eligible for inclusion in this review. Of 12 included studies, the quality level of one included study was A and of the others was B. The pooled effect size showed that compared with traditional teaching models, the FC could improve nursing students’ selfdirected learning skill, as measured by the Self-Directed Learning Readiness Scale(SDLRS), Self-Directed Learning Readiness Scale for Nursing Education(SDLRSNE), Self-Regulated Learning Scale(SRL), Autonomous Learning Competencies scale(ALC), and Competencies of Autonomous Learning of Nursing Students(CALNS). Overall scores and subgroup analyses with the SRL were all in favor of the FC.Conclusions: The result of this meta-analysis indicated that FCs could improve the effect of self-directed learning in nursing education.Future studies with more RCTs using the same measurement tools are needed to draw more authoritative conclusions.
文摘Aims:We examined the relationship between self-directed learning readiness(SDLR)and nursing competency among undergraduate nursing students.Background:There is little evidence-based data related to the relationship between selfdirected learning(SDL)and nursing competency.Methods:A descriptive correlational design was used.We conducted convenience sampling of 519 undergraduate nursing students from three universities during their final period of clinical practice.We investigated SDL according to the SDLR scale for nursing education(Chinese translation version),and used the Competency Inventory for Registered Nurses to evaluate nursing competency.Results:The mean SDLR score of the students was 148.55(standard deviation[SD]18.46),indicating intermediate and higher SDLR.The mean score for nursing competency was 142.31(SD30.39),indicating intermediate nursing competence.SDLR had a significant positive and strong relationship with nursing competency.Conclusion:SDLR is a predictor of nursing competency.
文摘Objective: Problem-solving should be a fundamental component of nursing education because It is a core ability for professional nurses. For more effective learning, nursing students must understand the relationship between self-directed learning readiness and problem-solving ability. The aim of this study was to investigate the relationships among self-directed learning readiness, problemsolving ability, and academic self-efficacy among undergraduate nursing students.Methods: From November to December 2016, research was conducted among 500 nursing undergraduate students in Tianjin, China,using a self-directed learning readiness scale, an academic self-efficacy scale, a questionnaire related to problem-solving, and selfdesigned demographics. The response rate was 85.8%.Results: For Chinese nursing students, self-directed learning readiness and academic self-efficacy reached a medium-to-high level,while problem-solving abilities were at a low level. There were significant positive correlations among the students' self-directed learning readiness, academic self-efficacy, and problem-solving ability. Furthermore, academic self-efficacy demonstrated a mediating effect on the relationship between the students' self-directed learning readiness and problem-solving ability.Conclusions: To enhance students' problem-solving ability, nursing educators should pay more attention to the positive impact of self-directed learning readiness and self-efficacy in nursing students' education.
文摘Objective The aims of this study were to describe nursing students′self-directed learning readiness and social problem solving and test their correlations in Macao.Methods This descriptive cross-sectional study was conducted on 140baccalaureate nursing students.A stratified random sampling was performed.The Self-directed Learning Readiness(SDLR)Scale and Chinese Social Problem-Solving Inventory-Revised(C-SPSI-R)were used.Results The response rate was 79.3%.Students possessed readiness for self-directed learning(mean 149.09±12.53,51.4%at high level,48.6%at low level).Regarding to social problem solving,the mean scores of each subscale were 9.35±3.25(Rational Problem Solving,RPS),10.26±3.23(Positive Problem Orientation,PPO),8.14±4.06(Negative Problem Orientation,NPO),5.67±4.44(Avoidance Style,AS),and 4.84±3.03(Impulsivity/Carelessness Style,ICS).SDLR was positively related to RPS and PPO,but was negatively related to AS.Conclusion Half of students possessed stronger readiness for self-directed learning.Students had a belief in the ability to solve problems,and adopted relevant strategies in solving problems.However,students still had negative and dysfunctional orientation and defective attempts in solving problems.Self-directed learning was positively related to positive and constructive orientation,but was negatively related to defective problem-solving pattern.Nurse educators should create educational climates for promoting student confidence and mutual responsibility for learning and their thinking process for problem solving.
文摘Background: Patients expect nurses to be both technically competent and psychosocially skilled. Enhancing the quality of patient care and patient safety in healthcare settings has increased, resulting in limited opportunities for students to practice clinical skills in healthcare settings. Achieving competence in these skills is viewed as an essential task to be completed during the school curriculum. Objective: The purpose of this study was to evaluate the use of self-observation through cellular recordings as an adjunct to the clinical skills teaching of a blood sugar test to undergraduate nursing. Design: The research design consisted of pre- and post-test consecutive experimental design through a control group. Settings: This study targeted nursing students enrolled in baccalaureate programs running in Korea. Participant: The participants were 64 students including 34 for the experimental group and 30 for the control group. Methods: Those in the control group received standard teaching methods using lectures and skills classes and facilitated the use of self-study methods. Those in the experimental group received standard teaching using lectures and skills classes and facilitated use of cell phone recorded self-observation. The self-confidence of practicing a blood sugar test, satisfaction with the learning method, self-study participation, level of interest in nursing practice, and self-directed learning ability were measured using questionnaires. Results: Significant between-groups differences were detected in self-confidence of practicing a blood sugar test (t = 2.067, p = 0.043), satisfaction with the learning method (t = 2.818, p = 0.044), self-study participation (χ2 = 7.635, p = 0.022), and average self-directed learning ability (t = 3.202, p = 0.002). Conclusions: Self-observation through cellular phone recordings is an effective learning method as an adjunct to teach clinical skills.
文摘Objective: To explore the effects of self-directed learning readiness and learning attitude on problem-solving ability among Chinese undergraduate nursing students. Methods: A convenience sampling of 460 undergraduate nursing students was surveyed in Tianjin, China. Students who participated in the study completed a questionnaire that included social demographic questionnaire, Self-directed Learning Readiness Scale, Attitude to Learning Scale, and Social Problem-Solving Inventory. Pearson’s correlation analysis was performed to test the correlations among problem-solving ability, self-directed learning readiness, and learning attitude. Hierarchical linear regression analyses were performed to explore the mediating role of learning attitude. Results: The results showed that learning attitude (r=0.338, P<0.01) and self-directed learning readiness (r=0.493, P<0.01) were positively correlated with problem-solving ability. Learning attitude played a partial intermediary role between self-directed learning readiness and problem-solving ability (F=74.227, P<0.01). Conclusions: It is concluded that nursing educators should pay attention on students’ individual differences and take proper actions to inspire students’ self-directed learning readiness and learning attitude.
文摘Self-directed learning (SDL) uses diverse learning resources to solve identified problems in learning. Nursing is a lifelong learning profession and SDL is a valuable skill to remain relevant and productive professionals. Nursing students are expected to embrace SDL and develop these skills. However, there has been no evidence of this innovative process in South-West Nigeria. This study seeks to evaluate nursing students’ readiness for SDL and its effect on learning outcome. This quasi-experimental study purposively utilized 229 nursing students as participants. Baseline (P1) data was collected using Gugliemino’s SDL readiness scale (SDLRS) and a validated-structured questionnaire. Participants had a pre-test to assess knowledge at P1 followed by 6 weeks interaction using SDL on selected topics in Medical-surgical nursing and the same test at post-intervention (P2). Using a 50-point scale, knowledge was categorized as good ≥ 25 and poor < 25 and SDLRS on a 290-point scale was categorized as below average 5 - 201, average 202 - 226 and above average 227 - 290. Descriptive statistics, Chi-square test, t-test and linear regression analysis were used for analysis at p = 0.05. Nursing students’ SDLRS was average;mean = 203 ± 23.0. A significant difference exists between nursing students with good knowledge at P1 and P2. At P1, 39.2% had good knowledge, mean = 22.2 ± 6.3, and 90.1% at P2, mean = 30.6 ± 5.4, p < 0.05 also a significant relationship exist between SDLR and learning outcome at P2;p < 0.05. With the nursing students’ average SDL readiness level having a significant effect on learning outcome. Nursing training institutions should provide necessary resources to embrace SDL as a main-line teaching method to ensure competent life-long professionals.
文摘In China,about 4.74 million Chinese have signed up for the 2023 national exam for postgraduate enrollment.More and more students will pursue a graduate school education.It’s important to note that the self-directed learning abilities of the students is crucial in the postgraduate entrance exam.Therefore,the study seeks to identify the level of the self-directed learning abilities and psychological capital of the postgraduate school candidates to identify whether there is a significant correlation between the candidates’self-directed learning abilities and psychological capital.
文摘In China,about 4.74 million Chinese have signed up for the 2023 national exam for postgraduate enrollment.More and more students will pursue a graduate school education.It’s important to note that the self-directed learning abilities of the students is crucial in the postgraduate entrance exam.Therefore,the study seeks to identify the level of the self-directed learning abilities and psychological capital of the postgraduate school candidates to identify whether there is a significant correlation between the candidates’self-directed learning abilities and psychological capital.
基金funded by Hung Yen University of Technology and Education under grand number UTEHY.L.2025.62.
文摘Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments.
基金supported by National Natural Science Foundation of China(62466045)Inner Mongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.
文摘With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.
基金supported by the Natural Science Foundation of Fujian Province of China(2025J01380)National Natural Science Foundation of China(No.62471139)+3 种基金the Major Health Research Project of Fujian Province(2021ZD01001)Fujian Provincial Units Special Funds for Education and Research(2022639)Fujian University of Technology Research Start-up Fund(GY-S24002)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(GY-H-24179).
文摘The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence.