This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse sca...N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.展开更多
The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time-...The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.展开更多
This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate ca...This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate case of two solitons and "ghost" solitons, etc. Co-moving coordinate frames are employed in asymptotic analysis.展开更多
We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is ...We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is derived. Furthermore, an integrable couplings of the JM soliton hierarchy with self-consistent sources is presented by using of the loop algebra sl(4).展开更多
The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical...The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical monopole plasma antenna excited by surface wave;calculation of the model is based on Maxwell-Boltzmann equation and gas molecular dynamics theory. The calculation results show that this method can reflect the relationships between the external excitation power, gas pressure, discharge current and the characteristic of plasma. It is an accurate method to predicate and calculate the parameters of plasma antenna.展开更多
The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulat...The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulation, for nonlinear problems, the complex wave number of each Fourier mode is determined by the so-called phase-locked rule, which results in non-self-consistency in the wave numbers. In this paper, a modification is proposed to make it self-consistent. The main idea is that, instead of allowing wave numbers to be complex, all wave numbers are kept real, and the growth or decay of each mode is simply manifested in the growth or decay of the modulus of its shape function. The validity of the new formulation is illustrated by comparing the results with those from the corresponding direct numerical simulation (DNS) as applied to a problem of compressible boundary layer with Mach number 6.展开更多
Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CH...Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon, and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.展开更多
Based on the matrix Lie super algebra and supertrace identity, the integrable super-Geng hierarchy with self-consistent is established. Furthermore, we establish the infinitely many conservation laws for the integrabl...Based on the matrix Lie super algebra and supertrace identity, the integrable super-Geng hierarchy with self-consistent is established. Furthermore, we establish the infinitely many conservation laws for the integrable super-Geng hierarchy. The methods derived by us can be generalized to other nonlinear equation hierarchies.展开更多
Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isos...Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated.展开更多
The Qiao-Liu equation with self-consistent sources (QLESCS) and its Lax representation are derived. A reciprocal transformation for the QLESCS is given. By making use of the reciprocal transformation and the solutions...The Qiao-Liu equation with self-consistent sources (QLESCS) and its Lax representation are derived. A reciprocal transformation for the QLESCS is given. By making use of the reciprocal transformation and the solutions of the mKdV equation with self-consistent sources (mKdVSCS), the solutions of the QLESCS are presented.展开更多
The non-isospectral sine-Gordon equation with self-consistent sources is derived.Its solutions are obtainedby means of Hirota method and Wronskian technique,respectively.Non-isospectral dynamics including one-solitonc...The non-isospectral sine-Gordon equation with self-consistent sources is derived.Its solutions are obtainedby means of Hirota method and Wronskian technique,respectively.Non-isospectral dynamics including one-solitoncharacteristics,two-soliton scattering,and ghost solitons,are investigated.展开更多
Infinitely many conservation laws for some (1+1)-dimension soliton hierarchy with self-consistent sources are constructed from their corresponding Lax pairs directly. Three examples are given. Besides, infinitely m...Infinitely many conservation laws for some (1+1)-dimension soliton hierarchy with self-consistent sources are constructed from their corresponding Lax pairs directly. Three examples are given. Besides, infinitely many conservation laws for Kadomtsev-Petviashvili (KP) hierarchy with self-consistent sources are obtained from the pseudo-differential operator and the Lax pair.展开更多
The isospectral and nonisospectral BKP equation with self-consistent sources is derived to study the linear problem of the BKP system. The bilinear form of the nonisospeetral BKP equation with self-consistent sources ...The isospectral and nonisospectral BKP equation with self-consistent sources is derived to study the linear problem of the BKP system. The bilinear form of the nonisospeetral BKP equation with self-consistent sources is given and the N-soliton solutions are obtained with the Hirota method and Pfaffian technique, respectively.展开更多
New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
Based upon the basis of Lie super algebra B(0,1), the super Tu equation hierarchy with self-con- sistent sources was presented. Furthermore, the infinite conservation laws of above hierarchy were given.
We construct a number(n)-resolved master equation (ME) approach under self-consistent Born approxi- mation (SCBA) for noise spectrum calculation. The formulation is essentially non-Markovian and incorporates pro...We construct a number(n)-resolved master equation (ME) approach under self-consistent Born approxi- mation (SCBA) for noise spectrum calculation. The formulation is essentially non-Markovian and incorporates properly the interlay of the multi-tunneling processes and many-body correlations. We apply this approach to the chall1enging nonequilibrium Kondo system and predict a profound nonequilibrium Kondo signature in the shot noise spectrum. The proposed n-SCBA-ME scheme goes completely beyond the scope of the Born-Markovian master equation approach, in the sense of being applicable to the shot noise of transport under small bias voltage, in non-Markovian regime, and with strong Coulomb correlations as favorably demonstrated in the nonequilibrium Kondo system.展开更多
In this paper, we investigate a modified differential-difference KP equation which is shown to have a continuum limit into the m KP equation. It is also shown that the solution of the modified differential-difference ...In this paper, we investigate a modified differential-difference KP equation which is shown to have a continuum limit into the m KP equation. It is also shown that the solution of the modified differential-difference KP equation is related to the solution of the differential-difference KP equation through a Miura transformation. We first present the Grammian solution to the modified differential-difference KP equation, and then produce a coupled modified differential-difference KP system by applying the source generation procedure. The explicit N-soliton solution of the resulting coupled modified differential-difference system is expressed in compact forms by using the Grammian determinant and Casorati determinant. We also construct and solve another form of the self-consistent sources extension of the modified differential-difference KP equation, which constitutes a B?cklund transformation for the differentialdifference KP equation with self-consistent sources.展开更多
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10371070,10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers+1 种基金Shanghai Leading Academic Discipline Project under Grant No.J50101 the President Foundation of East China Institute of Technology under Grant No.DHXK0810
文摘N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.
基金The project supported by the National Fundamental Research Program of China(973 Program)under Grant No.2007CB814800National Natural Science Foundation of China under Grant No.10601028
文摘The coupled Korteweg-de Vries (CKdV) equation with self-consistent sources (CKdVESCS) and its Lax representation are derived. We present a generalized binary Darboux transformation (GBDT) with an arbitrary time- dependent function for the CKdVESCS as well as the formula for the N-times repeated GBDT. This GBDT provides non-auto-Biicklund transformation between two CKdVESCSs with different degrees of sources and enables us to construct more generM solutions with N arbitrary t-dependent functions. We obtain positon, negaton, complexiton, and negaton- positon solutions of the CKdVESCS.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10371070 and 10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate case of two solitons and "ghost" solitons, etc. Co-moving coordinate frames are employed in asymptotic analysis.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No,2008670
文摘We propose a systematic method for generalizing the integrable couplings of soliton eqhations hierarchy with self-consistent sources associated with s/(4). The JM equations hierarchy with self-consistent sources is derived. Furthermore, an integrable couplings of the JM soliton hierarchy with self-consistent sources is presented by using of the loop algebra sl(4).
文摘The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical monopole plasma antenna excited by surface wave;calculation of the model is based on Maxwell-Boltzmann equation and gas molecular dynamics theory. The calculation results show that this method can reflect the relationships between the external excitation power, gas pressure, discharge current and the characteristic of plasma. It is an accurate method to predicate and calculate the parameters of plasma antenna.
基金supported by the National Natural Science Foundation of China(Nos.11202147,11472188,11332007,11172203,and 91216111)the Specialized Research Fund(New Teacher Class)for the Doctoral Program of Higher Education(No.20120032120007)
文摘The parabolized stability equation (PSE) method has been proven to be a useful and convenient tool for the investigation of the stability and transition problems of boundary layers. However, in its original formulation, for nonlinear problems, the complex wave number of each Fourier mode is determined by the so-called phase-locked rule, which results in non-self-consistency in the wave numbers. In this paper, a modification is proposed to make it self-consistent. The main idea is that, instead of allowing wave numbers to be complex, all wave numbers are kept real, and the growth or decay of each mode is simply manifested in the growth or decay of the modulus of its shape function. The validity of the new formulation is illustrated by comparing the results with those from the corresponding direct numerical simulation (DNS) as applied to a problem of compressible boundary layer with Mach number 6.
基金Supported by the Nationai Basic Research Program of China (973 program) under Grant No. 2007CB814800the National Science Foundation of China under Grant Nos. 10801083 and 10901090
文摘Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon, and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.
基金Supported by the National Natural Science Foundation of China(11271008, 61072147, 11547175) Supported by the Science and Technology Department of Henan Province(152300410230)+1 种基金 Supported by the Key Scientific Research Projects of Henan Province(16A110026) Supported by the Education Department of Henan Province(13All0101)
文摘Based on the matrix Lie super algebra and supertrace identity, the integrable super-Geng hierarchy with self-consistent is established. Furthermore, we establish the infinitely many conservation laws for the integrable super-Geng hierarchy. The methods derived by us can be generalized to other nonlinear equation hierarchies.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10371070 and 10671121the Foundation for Excellent Postgraduates of Shanghai University under Grant No. Shucx080127
文摘Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated.
基金Supported by National Basic Research Program of China (973 Program) under Grant No. 2007CB814800National Natural Science Foundation of China under Grant Nos. 10901090,11171175+1 种基金China Postdoctoral Science Foundation Funded Project under GrantNo. 20110490408Chinese Universities Scientific Fund under Grant No. 2011JS041
文摘The Qiao-Liu equation with self-consistent sources (QLESCS) and its Lax representation are derived. A reciprocal transformation for the QLESCS is given. By making use of the reciprocal transformation and the solutions of the mKdV equation with self-consistent sources (mKdVSCS), the solutions of the QLESCS are presented.
基金The project supported by National Natural Science Foundation of China under Grant No.10371070 the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘The non-isospectral sine-Gordon equation with self-consistent sources is derived.Its solutions are obtainedby means of Hirota method and Wronskian technique,respectively.Non-isospectral dynamics including one-solitoncharacteristics,two-soliton scattering,and ghost solitons,are investigated.
基金supported by the National Natural Science Foundation of China (Grant Nos.10371070, 10671121)the Shanghai Leading Academic Discipline Project (Grant No.J50101)the President Foundation of East China Institute of Technology (Grant No.DHXK0810)
文摘Infinitely many conservation laws for some (1+1)-dimension soliton hierarchy with self-consistent sources are constructed from their corresponding Lax pairs directly. Three examples are given. Besides, infinitely many conservation laws for Kadomtsev-Petviashvili (KP) hierarchy with self-consistent sources are obtained from the pseudo-differential operator and the Lax pair.
基金Supported by the National Natural Science Foundation of China under Grant No 10647128.
文摘The isospectral and nonisospectral BKP equation with self-consistent sources is derived to study the linear problem of the BKP system. The bilinear form of the nonisospeetral BKP equation with self-consistent sources is given and the N-soliton solutions are obtained with the Hirota method and Pfaffian technique, respectively.
基金Supported by the NSF of Henan Province(112300410109)Supported by the NSF of the Education Department(2010A110022)
文摘New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
文摘Based upon the basis of Lie super algebra B(0,1), the super Tu equation hierarchy with self-con- sistent sources was presented. Furthermore, the infinite conservation laws of above hierarchy were given.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274085 and 11304031the Major State Basic Research Project of China under Grant Nos.2011CB808502,and 2012CB932704+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe Program for Excellent Young Teachers in Hangzhou Normal University
文摘We construct a number(n)-resolved master equation (ME) approach under self-consistent Born approxi- mation (SCBA) for noise spectrum calculation. The formulation is essentially non-Markovian and incorporates properly the interlay of the multi-tunneling processes and many-body correlations. We apply this approach to the chall1enging nonequilibrium Kondo system and predict a profound nonequilibrium Kondo signature in the shot noise spectrum. The proposed n-SCBA-ME scheme goes completely beyond the scope of the Born-Markovian master equation approach, in the sense of being applicable to the shot noise of transport under small bias voltage, in non-Markovian regime, and with strong Coulomb correlations as favorably demonstrated in the nonequilibrium Kondo system.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11601247 and 11605096the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant Nos.2016MS0115 and 2015MS0116the Innovation Fund Programme of Inner Mongolia University No.201611155
文摘In this paper, we investigate a modified differential-difference KP equation which is shown to have a continuum limit into the m KP equation. It is also shown that the solution of the modified differential-difference KP equation is related to the solution of the differential-difference KP equation through a Miura transformation. We first present the Grammian solution to the modified differential-difference KP equation, and then produce a coupled modified differential-difference KP system by applying the source generation procedure. The explicit N-soliton solution of the resulting coupled modified differential-difference system is expressed in compact forms by using the Grammian determinant and Casorati determinant. We also construct and solve another form of the self-consistent sources extension of the modified differential-difference KP equation, which constitutes a B?cklund transformation for the differentialdifference KP equation with self-consistent sources.