This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the se...This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.展开更多
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the opt...This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.展开更多
The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is...The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is proposed. The large data set and recommendation computation are decomposed into parallel processing on multiple computers. A parallel recommendation engine based on Hadoop open source framework is established, and the effectiveness of the system is validated by learning recommendation on an English training platform. The experimental results show that the scalability of the recommender system can be greatly improved by using cloud computing technology to handle massive data in the cluster. On the basis of the comparison of traditional recommendation algorithms, combined with the advantages of cloud computing, a personalized recommendation system based on cloud computing is proposed.展开更多
This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this ...This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.展开更多
In this paper, we conduct research on the computer network protocol test model based on genetic and random walk algorithm.Network protocol is the abstract concept, is important in the process of the development of net...In this paper, we conduct research on the computer network protocol test model based on genetic and random walk algorithm.Network protocol is the abstract concept, is important in the process of the development of network system. Fully understand and grasp of thenetwork protocols for managers is there is a big diffi cult. Network covert channel is the evaluation of intrusion detection system and fi rewallsecurity performance of an important means, the paper will start from the angle of the attacker, the fl aws of the research, and use this kind ofdefect to realize network covert channel, the random walk algorithm will be feasible for dealing with this issue. For achieving this, we integratethe genetic and random walk algorithm for systematic optimization.展开更多
We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies tile balance condition. Its performance improves signific...We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies tile balance condition. Its performance improves significantly compared to that of the Berretti-Sokal algorithm, which is a variant of the Metropolis Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L = 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, υ^* = 2/d and γ/υ^* = d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.展开更多
One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying que...One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process.展开更多
Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some l...Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms.展开更多
针对股价预测中存在的不确定性、间断性、随机性和非线性等问题,提出一种TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。首先,采用自适应Tent混沌映射和随机游走策略对算法进行改...针对股价预测中存在的不确定性、间断性、随机性和非线性等问题,提出一种TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。首先,采用自适应Tent混沌映射和随机游走策略对算法进行改进,增强种群多样性和随机性,提高算法局部和全局的寻优能力。其次,使用单峰、多峰和固定维多峰测试函数对TRSSA(Tent Random Walk Sparrow Optimization Algorithm)性能进行了验证,相比于SSA(Sparrow Optimization Algorithm)、AO(Aquila Optimizer)、POA(Pelican Optimization Algorithm)和GWO(Grey Wolf Optimizer),TRSSA算法具有更好的收敛速度、精度和统计性质。最后,由于ELM(Extreme Learning Machine)模型随机生成权重和阈值,降低了预测精度和泛化能力,应用TRSSA算法优化ELM模型的权重和阈值,并用三安光电股票数据集对TRSSA-ELM模型进行了测试。实验结果表明,TRSSA-ELM模型相比于SSA-ELM、ELM、SVR(Support Vector Regression)和GBDT(Gradient Boosting Decision Tree),具有更好的预测精度和稳定性。展开更多
量子行走得益于概率幅的叠加特性,可同时出现在多条路径中,使其能以平方式乃至指数级别的速度加速扩散所携带的量子信息。文章基于无向图G=(V,E)结构,从离散时间量子随机行走(Discrete Time Quantum Walk,DTQW)搜索算法特性出发,运用幺...量子行走得益于概率幅的叠加特性,可同时出现在多条路径中,使其能以平方式乃至指数级别的速度加速扩散所携带的量子信息。文章基于无向图G=(V,E)结构,从离散时间量子随机行走(Discrete Time Quantum Walk,DTQW)搜索算法特性出发,运用幺正变换的硬币算符与迁移算符,构建了DTQW搜索算法步骤框图,在此基础上,应用SKW搜索算法对4节点无向图中的标记节点态进行搜索,通过态塌缩的观测,实现以1/4概率化读取出目标节点。研究结果表明,当有n个足够大的量子系统,并保持彼此之间的强纠缠性时,量子随机行走可以过渡到经典随机行走。文章还详细讨论了DTQW搜索算法实现左右同移的二次加速搜索机制。展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.
文摘The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is proposed. The large data set and recommendation computation are decomposed into parallel processing on multiple computers. A parallel recommendation engine based on Hadoop open source framework is established, and the effectiveness of the system is validated by learning recommendation on an English training platform. The experimental results show that the scalability of the recommender system can be greatly improved by using cloud computing technology to handle massive data in the cluster. On the basis of the comparison of traditional recommendation algorithms, combined with the advantages of cloud computing, a personalized recommendation system based on cloud computing is proposed.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.
文摘In this paper, we conduct research on the computer network protocol test model based on genetic and random walk algorithm.Network protocol is the abstract concept, is important in the process of the development of network system. Fully understand and grasp of thenetwork protocols for managers is there is a big diffi cult. Network covert channel is the evaluation of intrusion detection system and fi rewallsecurity performance of an important means, the paper will start from the angle of the attacker, the fl aws of the research, and use this kind ofdefect to realize network covert channel, the random walk algorithm will be feasible for dealing with this issue. For achieving this, we integratethe genetic and random walk algorithm for systematic optimization.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China under Grant Nos. 11275185 and 11625522, and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y5KF191CJ1). Y. Deng acknowledges the Ministry of Education (of China) for the Fundamental Research Funds for the Central Universities under Grant No. 2340000034.
文摘We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies tile balance condition. Its performance improves significantly compared to that of the Berretti-Sokal algorithm, which is a variant of the Metropolis Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L = 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, υ^* = 2/d and γ/υ^* = d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.
文摘One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process.
基金What is more,we thank the National Natural Science Foundation of China(Nos.61966039,62241604)the Scientific Research Fund Project of the Education Department of Yunnan Province(No.2023Y0565)Also,this work was supported in part by the Xingdian Talent Support Program for Young Talents(No.XDYC-QNRC-2022-0518).
文摘Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms.
文摘量子行走得益于概率幅的叠加特性,可同时出现在多条路径中,使其能以平方式乃至指数级别的速度加速扩散所携带的量子信息。文章基于无向图G=(V,E)结构,从离散时间量子随机行走(Discrete Time Quantum Walk,DTQW)搜索算法特性出发,运用幺正变换的硬币算符与迁移算符,构建了DTQW搜索算法步骤框图,在此基础上,应用SKW搜索算法对4节点无向图中的标记节点态进行搜索,通过态塌缩的观测,实现以1/4概率化读取出目标节点。研究结果表明,当有n个足够大的量子系统,并保持彼此之间的强纠缠性时,量子随机行走可以过渡到经典随机行走。文章还详细讨论了DTQW搜索算法实现左右同移的二次加速搜索机制。