Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing h...Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data.We present Clustered Butterfly Optimization Techniques(RoughK-means+BOA)as a new hybrid method for predicting heart disease.This method comprises two phases:clustering data using Roughk-means(RKM)and data analysis using the butterfly optimization algorithm(BOA).The benchmark dataset from the UCI repository is used for our experiments.The experiments are divided into three sets:the first set involves the RKM clustering technique,the next set evaluates the classification outcomes,and the last set validates the performance of the proposed hybrid model.The proposed RoughK-means+BOA has achieved a reasonable accuracy of 97.03 and a minimal error rate of 2.97.This result is comparatively better than other combinations of optimization techniques.In addition,this approach effectively enhances data segmentation,optimization,and classification performance.展开更多
Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV pred...Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications.展开更多
Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software ...Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models.展开更多
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as...Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel...In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM.展开更多
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict...With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.展开更多
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d...Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.展开更多
In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(suc...In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(such as analytical,numerical,and regression)is challenging and sometimes unattainable.This is primarily due to the inherent nonlinearity of the model,the intricate nature of geotechnical materials,the complex interaction between soil and foundation,and the inherent uncertainty in soil parameters.Therefore,thesemethods often introduce assumptions and simplifications,resulting in relationships that deviate from the actual problem’s reality.In addition,many of these methods demand significant investments of time and resources but neglect to account for the uncertainty inherent in soil/rock parameters.This study explores the application of innovative intelligent techniques to predict S_(m) to address these shortcomings.Specifically,two optimization algorithms,namely teaching-learning-based optimization(TLBO)and harmony search(HS),are harnessed for this purpose.The modeling process involves utilizing input parameters,such as thewidth of the footing(B),the pressure exerted on the footing(q),the count of SPT(Standard Penetration Test)blows(N),the ratio of footing embedment(Df/B),and the footing’s geometry(L/B),during the training phase with a dataset comprising 151 data points.Then,the models’accuracy is assessed during the testing phase using statistical metrics,including the coefficient of determination(R^(2)),mean square error(MSE),and rootmean square error(RMSE),based on a dataset of 38 data points.The findings of this investigation underscore the substantial efficacy of intelligent optimization algorithms as valuable tools for geotechnical engineers when estimating S_(m).In addition,a sensitivity analysis of the input parameters in S_(m) estimation is conducted using@RISK software,revealing that among the various input parameters,the N exerts the most pronounced influence on S_(m).展开更多
Sewer pipe condition assessment by performing regular inspections is crucial for ensuring the systems’effective operation and maintenance.CCTV(closed-circuit television)is widely employed in North America to examine ...Sewer pipe condition assessment by performing regular inspections is crucial for ensuring the systems’effective operation and maintenance.CCTV(closed-circuit television)is widely employed in North America to examine the internal conditions of sewage pipes.Due to the extensive inventory of pipes and associated costs,it is not practical for municipalities to conduct inspections on each sanitary sewage pipe section.According to the ASCE(American Society of Civil Engineers)infrastructure report published in 2021,combined investment needs for water and wastewater systems are estimated to be$150 billion during 2016-2025.Therefore,new solutions are needed to fill the trillion-dollar investment gap to improve the existing water and wastewater infrastructure for the coming years.ML(machine learning)based prediction model development is an effective method for predicting the condition of sewer pipes.In this research,sewer pipe inspection data from several municipalities are collected,which include variables such as pipe material,age,diameter,length,soil type,slope of construction,and PACP(Pipeline Assessment Certification Program)score.These sewer pipe data exhibit a severe imbalance in pipes’PACP scores,which is considered the target variable in the development of models.Due to this imbalanced dataset,the performance of the sewer prediction model is poor.This paper,therefore,aims to employ oversampling and hyperparameter tuning techniques to treat the imbalanced data and improve the model’s performance significantly.Utility owners and municipal asset managers can utilize the developed models to make more informed decisions on future inspections of sewer pipelines.展开更多
BACKGROUND Parastomal hernia(PSH)is a common and challenging complication following preventive ostomy in rectal cancer patients,lacking accurate tools for early risk prediction.AIM To explore the application of machin...BACKGROUND Parastomal hernia(PSH)is a common and challenging complication following preventive ostomy in rectal cancer patients,lacking accurate tools for early risk prediction.AIM To explore the application of machine learning algorithms in predicting the occurrence of PSH in patients undergoing preventive ostomy after rectal cancer resection,providing valuable support for clinical decision-making.METHODS A retrospective analysis was conducted on the clinical data of 579 patients who underwent rectal cancer resection with preventive ostomy at Tongji Hospital,Huazhong University of Science and Technology,between January 2015 and June 2023.Various machine learning models were constructed and trained using preoperative and intraoperative clinical variables to assess their predictive performance for PSH risk.SHapley Additive exPlanations(SHAP)were used to analyze the importance of features in the models.RESULTS A total of 579 patients were included,with 31(5.3%)developing PSH.Among the machine learning models,the random forest(RF)model showed the best performance.In the test set,the RF model achieved an area under the curve of 0.900,sensitivity of 0.900,and specificity of 0.725.SHAP analysis revealed that tumor distance from the anal verge,body mass index,and preoperative hypertension were the key factors influencing the occurrence of PSH.CONCLUSION Machine learning,particularly the RF model,demonstrates high accuracy and reliability in predicting PSH after preventive ostomy in rectal cancer patients.This technology supports personalized risk assessment and postoperative management,showing significant potential for clinical application.An online predictive platform based on the RF model(https://yangsu2023.shinyapps.io/parastomal_hernia/)has been developed to assist in early screening and intervention for high-risk patients,further enhancing postoperative management and improving patients’quality of life.展开更多
In regions characterized with great mining depths,complex topography,and intense geological activities,solely relying on lateral pressure coefficients or linear boundary conditions for predicting the in situ stress fi...In regions characterized with great mining depths,complex topography,and intense geological activities,solely relying on lateral pressure coefficients or linear boundary conditions for predicting the in situ stress field of rock bodies can induce substantial deviations and limitations.This study focuses on a typical karst area in Southwest Guizhou,China as its research background.It employs a hybrid approach integrating machine learning,numerical simulations,and field experiments to develop an optimization algorithm for nonlinear prediction of the complex three-dimensional(3D)in situ stress fields.Through collecting and fitting analysis of in situ stress measurement data from the karst region,the distributions of in situ stresses with depth were identified with nonlinear boundary conditions.A prediction model for in situ stress was then established based on artificial neural network(ANN)and genetic algorithm(GA)approach,validated in the typical karst landscape mine,Jinfeng Gold Mine.The results demonstrate that the model's predictions align well with actual measurements,showcasing consistency and regularity.Specifically,the error between the predicted and actual values of the maximum horizontal principal stress was the smallest,with an absolute error 0.01-3 MPa and a relative error of 0.04-15.31%.This model accurately and effectively predicts in situ stresses in complex geological areas.展开更多
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ...As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.展开更多
Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,ran...Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,random forest,BP neural network and genetic algorithm optimization neural network algorithm was established by using a raw dataset including 10 characteristic variables such as gender,age,hypertension,heart disease,and 1 stroke target variable.The experimental results show that the average blood glucose level,body mass index,hypertension and other variables have a great impact on the risk of stroke,and the neural network algorithm optimized by the genetic algorithm performs slightly better than the other three models.展开更多
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr...Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.展开更多
The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is su...The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is supposed to deal with this problem effectively.In this study,we propose an improved non-equidistant grey model GM(1,1)with background values optimized by a genetic algorithm(GA).While the grey model is not good enough to track data series with features of randomness and nonlinearity,the residual error series of the GA-GM(1,1)model is corrected through a back propagation neural network(BPNN).To further improve the performance of the GA-GM(1,1)-BPNN model,a particle swarm optimization(PSO)algorithm is implemented to train the weight and bias in the neural network.The traditional non-equidistant GM(1,1)model and the proposed GA-GM(1,1),GA-GM(1,1)-BPNN,and GA-GM(1,1)-PSO-BPNN models were used to predict the wheel diameter and wheel flange wear of the Changchun light rail train and their validity and rationality were verified.Benefitting from the optimization effects of the GA,neural network,and PSO algorithm,the performance ranking of the four methods from highest to lowest was GA-GM(1,1)-PSO-BPNN>GA-GM(1,1)-BPNN>GA-GM(1,1)>GM(1,1)in both the fitting and prediction zones.The GA-GM(1,1)-PSO-BPNN model performed best,with the lowest fitting and forecasting maximum relative error,mean absolute error,mean absolute percentage error,and mean squared error of all four models.Therefore,it is the most effective and stable model in field application of light rail train wheel wear prediction.展开更多
Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dyn...Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy.展开更多
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr...BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification.展开更多
The prediction of slope stability is a complex nonlinear problem.This paper proposes a new method based on the random forest(RF)algorithm to study the rocky slopes stability.Taking the Bukit Merah,Perak and Twin Peak(...The prediction of slope stability is a complex nonlinear problem.This paper proposes a new method based on the random forest(RF)algorithm to study the rocky slopes stability.Taking the Bukit Merah,Perak and Twin Peak(Kuala Lumpur)as the study area,the slope characteristics of geometrical parameters are obtained from a multidisciplinary approach(consisting of geological,geotechnical,and remote sensing analyses).18 factors,including rock strength,rock quality designation(RQD),joint spacing,continuity,openness,roughness,filling,weathering,water seepage,temperature,vegetation index,water index,and orientation,are selected to construct model input variables while the factor of safety(FOS)functions as an output.The area under the curve(AUC)value of the receiver operating characteristic(ROC)curve is obtained with precision and accuracy and used to analyse the predictive model ability.With a large training set and predicted parameters,an area under the ROC curve(the AUC)of 0.95 is achieved.A precision score of 0.88 is obtained,indicating that the model has a low false positive rate and correctly identifies a substantial number of true positives.The findings emphasise the importance of using a variety of terrain characteristics and different approaches to characterise the rock slope.展开更多
基金supported by the Research Incentive Grant 23200 of Zayed University,United Arab Emirates.
文摘Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data.We present Clustered Butterfly Optimization Techniques(RoughK-means+BOA)as a new hybrid method for predicting heart disease.This method comprises two phases:clustering data using Roughk-means(RKM)and data analysis using the butterfly optimization algorithm(BOA).The benchmark dataset from the UCI repository is used for our experiments.The experiments are divided into three sets:the first set involves the RKM clustering technique,the next set evaluates the classification outcomes,and the last set validates the performance of the proposed hybrid model.The proposed RoughK-means+BOA has achieved a reasonable accuracy of 97.03 and a minimal error rate of 2.97.This result is comparatively better than other combinations of optimization techniques.In addition,this approach effectively enhances data segmentation,optimization,and classification performance.
基金supported by the National Natural Science Foundation of China(Grant No.52409143)the Basic Scientific Research Fund of Changjiang River Scientific Research Institute for Central-level Public Welfare Research Institutes(Grant No.CKSF2025184/YT)the Hubei Provincial Natural Science Foundation of China(Grant No.2022CFB673).
文摘Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications.
文摘Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models.
基金supported by National Natural Science Foundation of China(32122066,32201855)STI2030—Major Projects(2023ZD04076).
文摘Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM.
基金supported by General Scientific Research Funding of the Science and Technology Development Fund(FDCT)in Macao(No.0150/2022/A)the Faculty Research Grants of Macao University of Science and Technology(No.FRG-22-074-FIE).
文摘With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.
基金supported by the Universiti Kebangsaan Malaysia(DIP-2016-024).
文摘Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.
文摘In contemporary geotechnical projects,various approaches are employed for forecasting the settlement of shallow foundations(S_(m)).However,achieving precise modeling of foundation behavior using certain techniques(such as analytical,numerical,and regression)is challenging and sometimes unattainable.This is primarily due to the inherent nonlinearity of the model,the intricate nature of geotechnical materials,the complex interaction between soil and foundation,and the inherent uncertainty in soil parameters.Therefore,thesemethods often introduce assumptions and simplifications,resulting in relationships that deviate from the actual problem’s reality.In addition,many of these methods demand significant investments of time and resources but neglect to account for the uncertainty inherent in soil/rock parameters.This study explores the application of innovative intelligent techniques to predict S_(m) to address these shortcomings.Specifically,two optimization algorithms,namely teaching-learning-based optimization(TLBO)and harmony search(HS),are harnessed for this purpose.The modeling process involves utilizing input parameters,such as thewidth of the footing(B),the pressure exerted on the footing(q),the count of SPT(Standard Penetration Test)blows(N),the ratio of footing embedment(Df/B),and the footing’s geometry(L/B),during the training phase with a dataset comprising 151 data points.Then,the models’accuracy is assessed during the testing phase using statistical metrics,including the coefficient of determination(R^(2)),mean square error(MSE),and rootmean square error(RMSE),based on a dataset of 38 data points.The findings of this investigation underscore the substantial efficacy of intelligent optimization algorithms as valuable tools for geotechnical engineers when estimating S_(m).In addition,a sensitivity analysis of the input parameters in S_(m) estimation is conducted using@RISK software,revealing that among the various input parameters,the N exerts the most pronounced influence on S_(m).
文摘Sewer pipe condition assessment by performing regular inspections is crucial for ensuring the systems’effective operation and maintenance.CCTV(closed-circuit television)is widely employed in North America to examine the internal conditions of sewage pipes.Due to the extensive inventory of pipes and associated costs,it is not practical for municipalities to conduct inspections on each sanitary sewage pipe section.According to the ASCE(American Society of Civil Engineers)infrastructure report published in 2021,combined investment needs for water and wastewater systems are estimated to be$150 billion during 2016-2025.Therefore,new solutions are needed to fill the trillion-dollar investment gap to improve the existing water and wastewater infrastructure for the coming years.ML(machine learning)based prediction model development is an effective method for predicting the condition of sewer pipes.In this research,sewer pipe inspection data from several municipalities are collected,which include variables such as pipe material,age,diameter,length,soil type,slope of construction,and PACP(Pipeline Assessment Certification Program)score.These sewer pipe data exhibit a severe imbalance in pipes’PACP scores,which is considered the target variable in the development of models.Due to this imbalanced dataset,the performance of the sewer prediction model is poor.This paper,therefore,aims to employ oversampling and hyperparameter tuning techniques to treat the imbalanced data and improve the model’s performance significantly.Utility owners and municipal asset managers can utilize the developed models to make more informed decisions on future inspections of sewer pipelines.
文摘BACKGROUND Parastomal hernia(PSH)is a common and challenging complication following preventive ostomy in rectal cancer patients,lacking accurate tools for early risk prediction.AIM To explore the application of machine learning algorithms in predicting the occurrence of PSH in patients undergoing preventive ostomy after rectal cancer resection,providing valuable support for clinical decision-making.METHODS A retrospective analysis was conducted on the clinical data of 579 patients who underwent rectal cancer resection with preventive ostomy at Tongji Hospital,Huazhong University of Science and Technology,between January 2015 and June 2023.Various machine learning models were constructed and trained using preoperative and intraoperative clinical variables to assess their predictive performance for PSH risk.SHapley Additive exPlanations(SHAP)were used to analyze the importance of features in the models.RESULTS A total of 579 patients were included,with 31(5.3%)developing PSH.Among the machine learning models,the random forest(RF)model showed the best performance.In the test set,the RF model achieved an area under the curve of 0.900,sensitivity of 0.900,and specificity of 0.725.SHAP analysis revealed that tumor distance from the anal verge,body mass index,and preoperative hypertension were the key factors influencing the occurrence of PSH.CONCLUSION Machine learning,particularly the RF model,demonstrates high accuracy and reliability in predicting PSH after preventive ostomy in rectal cancer patients.This technology supports personalized risk assessment and postoperative management,showing significant potential for clinical application.An online predictive platform based on the RF model(https://yangsu2023.shinyapps.io/parastomal_hernia/)has been developed to assist in early screening and intervention for high-risk patients,further enhancing postoperative management and improving patients’quality of life.
基金financially supported by the National Natural Science Foundation of China(Grant No.52374118)the Science and Technology Support Project of Guizhou Province,China(Project Grant No.Qiankehe Support(2022)General 247).
文摘In regions characterized with great mining depths,complex topography,and intense geological activities,solely relying on lateral pressure coefficients or linear boundary conditions for predicting the in situ stress field of rock bodies can induce substantial deviations and limitations.This study focuses on a typical karst area in Southwest Guizhou,China as its research background.It employs a hybrid approach integrating machine learning,numerical simulations,and field experiments to develop an optimization algorithm for nonlinear prediction of the complex three-dimensional(3D)in situ stress fields.Through collecting and fitting analysis of in situ stress measurement data from the karst region,the distributions of in situ stresses with depth were identified with nonlinear boundary conditions.A prediction model for in situ stress was then established based on artificial neural network(ANN)and genetic algorithm(GA)approach,validated in the typical karst landscape mine,Jinfeng Gold Mine.The results demonstrate that the model's predictions align well with actual measurements,showcasing consistency and regularity.Specifically,the error between the predicted and actual values of the maximum horizontal principal stress was the smallest,with an absolute error 0.01-3 MPa and a relative error of 0.04-15.31%.This model accurately and effectively predicts in situ stresses in complex geological areas.
基金funded by National Natural Science Foundation of China(Grants Nos.41825018 and 42141009)the Second Tibetan Plateau Scientific Expedition and Research Program(Grants No.2019QZKK0904)。
文摘As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.
基金2024 University-level Training Program for College Students'Innovation Entrepreneurship(No.202410060069)。
文摘Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,random forest,BP neural network and genetic algorithm optimization neural network algorithm was established by using a raw dataset including 10 characteristic variables such as gender,age,hypertension,heart disease,and 1 stroke target variable.The experimental results show that the average blood glucose level,body mass index,hypertension and other variables have a great impact on the risk of stroke,and the neural network algorithm optimized by the genetic algorithm performs slightly better than the other three models.
文摘Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.
基金supported by the National Natural Science Foundation of China(No.52178436)the Shanghai Collaborative Innovation Research Center for Multi-network&Multi-modal Rail Transit,China.
文摘The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is supposed to deal with this problem effectively.In this study,we propose an improved non-equidistant grey model GM(1,1)with background values optimized by a genetic algorithm(GA).While the grey model is not good enough to track data series with features of randomness and nonlinearity,the residual error series of the GA-GM(1,1)model is corrected through a back propagation neural network(BPNN).To further improve the performance of the GA-GM(1,1)-BPNN model,a particle swarm optimization(PSO)algorithm is implemented to train the weight and bias in the neural network.The traditional non-equidistant GM(1,1)model and the proposed GA-GM(1,1),GA-GM(1,1)-BPNN,and GA-GM(1,1)-PSO-BPNN models were used to predict the wheel diameter and wheel flange wear of the Changchun light rail train and their validity and rationality were verified.Benefitting from the optimization effects of the GA,neural network,and PSO algorithm,the performance ranking of the four methods from highest to lowest was GA-GM(1,1)-PSO-BPNN>GA-GM(1,1)-BPNN>GA-GM(1,1)>GM(1,1)in both the fitting and prediction zones.The GA-GM(1,1)-PSO-BPNN model performed best,with the lowest fitting and forecasting maximum relative error,mean absolute error,mean absolute percentage error,and mean squared error of all four models.Therefore,it is the most effective and stable model in field application of light rail train wheel wear prediction.
基金supported by the National Natural Science Foundation of China(Grant Nos.52231014 and 52271361)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515010684).
文摘Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy.
基金the Chinese Clinical Trial Registry(No.ChiCTR2000040109)approved by the Hospital Ethics Committee(No.20210130017).
文摘BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification.
基金support in providing the data and the Universiti Teknologi Malaysia supported this work under UTM Flagship CoE/RG-Coe/RG 5.2:Evaluating Surface PGA with Global Ground Motion Site Response Analyses for the highest seismic activity location in Peninsular Malaysia(Q.J130000.5022.10G47)Universiti Teknologi Malaysia-Earthquake Hazard Assessment in Peninsular Malaysia Using Probabilistic Seismic Hazard Analysis(PSHA)Method(Q.J130000.21A2.06E9).
文摘The prediction of slope stability is a complex nonlinear problem.This paper proposes a new method based on the random forest(RF)algorithm to study the rocky slopes stability.Taking the Bukit Merah,Perak and Twin Peak(Kuala Lumpur)as the study area,the slope characteristics of geometrical parameters are obtained from a multidisciplinary approach(consisting of geological,geotechnical,and remote sensing analyses).18 factors,including rock strength,rock quality designation(RQD),joint spacing,continuity,openness,roughness,filling,weathering,water seepage,temperature,vegetation index,water index,and orientation,are selected to construct model input variables while the factor of safety(FOS)functions as an output.The area under the curve(AUC)value of the receiver operating characteristic(ROC)curve is obtained with precision and accuracy and used to analyse the predictive model ability.With a large training set and predicted parameters,an area under the ROC curve(the AUC)of 0.95 is achieved.A precision score of 0.88 is obtained,indicating that the model has a low false positive rate and correctly identifies a substantial number of true positives.The findings emphasise the importance of using a variety of terrain characteristics and different approaches to characterise the rock slope.