Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose...Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution.展开更多
This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This w...This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This work employs 25 different chaotic maps under the framework of Aquila Optimizer.It considers the ten best chaotic variants for performance evaluation on multidimensional test functions composed of unimodal and multimodal problems,which have yet to be studied in past literature works.It was found that Ikeda chaotic map enhanced Aquila Optimization algorithm yields the best predictions and becomes the leading method in most of the cases.To test the effectivity of this chaotic variant on real-world optimization problems,it is employed on two constrained engineering design problems,and its effectiveness has been verified.Finally,phase equilibrium and semi-empirical parameter estimation problems have been solved by the proposed method,and respective solutions have been compared with those obtained from state-of-art optimizers.It is observed that CH01 can successfully cope with the restrictive nonlinearities and nonconvexities of parameter estimation and phase equilibrium problems,showing the capabilities of yielding minimum prediction error values of no more than 0.05 compared to the remaining algorithms utilized in the performance benchmarking process.展开更多
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se...To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic opt...Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems.展开更多
Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the ...Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.展开更多
In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and ...In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms.展开更多
The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,suc...The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production.展开更多
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F...Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems.展开更多
This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its prope...This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its property of global asymptotical convergence has been proved with Markov chains in this paper. CGA was applied to the optimization of complex benchmark functions and artificial neural network's (ANN) training. In solving the complex benchmark functions,CGA needs less iterative number than GA and other chaotic optimization algorithms and always finds the optima of these functions. In training ANN,CGA uses less iterative number and shows strong generalization. It is proved that CGA is an efficient and convenient chaotic optimization algorithm.展开更多
Farmland Fertility Algorithm(FFA)is a recent nature-inspired metaheuristic algorithm for solving optimization problems.Nevertheless,FFA has some drawbacks:slow convergence and imbalance of diversification(exploration)...Farmland Fertility Algorithm(FFA)is a recent nature-inspired metaheuristic algorithm for solving optimization problems.Nevertheless,FFA has some drawbacks:slow convergence and imbalance of diversification(exploration)and intensification(exploitation).An adaptive mechanism in every algorithm can achieve a proper balance between exploration and exploitation.The literature shows that chaotic maps are incorporated into metaheuristic algorithms to eliminate these drawbacks.Therefore,in this paper,twelve chaotic maps have been embedded into FFA to find the best numbers of prospectors to increase the exploitation of the best promising solutions.Furthermore,the Quasi-Oppositional-Based Learning(QOBL)mechanism enhances the exploration speed and convergence rate;we name a CQFFA algorithm.The improvements have been made in line with the weaknesses of the FFA algorithm because the FFA algorithm has fallen into the optimal local trap in solving some complex problems or does not have sufficient ability in the intensification component.The results obtained show that the proposed CQFFA model has been significantly improved.It is applied to twenty-three widely-used test functions and compared with similar state-of-the-art algorithms statistically and visually.Also,the CQFFA algorithm has evaluated six real-world engineering problems.The experimental results showed that the CQFFA algorithm outperforms other competitor algorithms.展开更多
The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.Howev...The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency.展开更多
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ...Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.展开更多
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne...The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt...Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios.展开更多
There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral ...There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral emissivity and true temperature of any object only based on the measured brightness temperature data. In order to improve the accuracy of approximate calculations, the local minimum problem in the algorithm must be solved. Therefore, the authors design an optimal algorithm, i.e. a hybrid chaotic optimal algorithm, in which the chaos is used to roughly seek for the parameters involved in the model, and then a second seek for them is performed using the steepest descent. The modelling of emissivity settles the problems in assumptive models in multi-spectral theory.展开更多
基金supported by the Shaanxi Province Natural Science Basic Research Program Project(2024JC-YBMS-572)partially funded by Yan’an University Graduate Education Innovation Program Project(YCX2023032,YCX2023033,YCX2024094,YCX2024097)the“14th Five Year Plan Medium and Long Term Major Scientific Research Project”(2021ZCQ015)of Yan’an University.
文摘Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution.
文摘This research study aims to enhance the optimization performance of a newly emerged Aquila Optimization algorithm by incorporating chaotic sequences rather than using uniformly generated Gaussian random numbers.This work employs 25 different chaotic maps under the framework of Aquila Optimizer.It considers the ten best chaotic variants for performance evaluation on multidimensional test functions composed of unimodal and multimodal problems,which have yet to be studied in past literature works.It was found that Ikeda chaotic map enhanced Aquila Optimization algorithm yields the best predictions and becomes the leading method in most of the cases.To test the effectivity of this chaotic variant on real-world optimization problems,it is employed on two constrained engineering design problems,and its effectiveness has been verified.Finally,phase equilibrium and semi-empirical parameter estimation problems have been solved by the proposed method,and respective solutions have been compared with those obtained from state-of-art optimizers.It is observed that CH01 can successfully cope with the restrictive nonlinearities and nonconvexities of parameter estimation and phase equilibrium problems,showing the capabilities of yielding minimum prediction error values of no more than 0.05 compared to the remaining algorithms utilized in the performance benchmarking process.
文摘To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.
基金supported by the National Natural Science Foundation of China No.61976176.
文摘Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems.
基金supported by theKey Research and Development Project of Hubei Province(No.2023BAB094)the Key Project of Science and Technology Research Program of Hubei Educational Committee(No.D20211402)the Open Foundation of HubeiKey Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System(No.HBSEES202309).
文摘Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.
基金Supported by the National Key R&D Program of China(2022ZD0119001).
文摘In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms.
基金support by Ningxia Key R&D projects“Integration and demonstration application of intelligent finishing system for large casting riser robot”(No.2021BEE03002)Ningxia Natural Science Foundation Project“Research on detection and location of large casting welding seam based on depth learning”(No.2020AAC03201).
文摘The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production.
文摘Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60674024)the Initial Foundation of Civil Aviation University of China(Grant No. 06QD04x)
文摘This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its property of global asymptotical convergence has been proved with Markov chains in this paper. CGA was applied to the optimization of complex benchmark functions and artificial neural network's (ANN) training. In solving the complex benchmark functions,CGA needs less iterative number than GA and other chaotic optimization algorithms and always finds the optima of these functions. In training ANN,CGA uses less iterative number and shows strong generalization. It is proved that CGA is an efficient and convenient chaotic optimization algorithm.
文摘Farmland Fertility Algorithm(FFA)is a recent nature-inspired metaheuristic algorithm for solving optimization problems.Nevertheless,FFA has some drawbacks:slow convergence and imbalance of diversification(exploration)and intensification(exploitation).An adaptive mechanism in every algorithm can achieve a proper balance between exploration and exploitation.The literature shows that chaotic maps are incorporated into metaheuristic algorithms to eliminate these drawbacks.Therefore,in this paper,twelve chaotic maps have been embedded into FFA to find the best numbers of prospectors to increase the exploitation of the best promising solutions.Furthermore,the Quasi-Oppositional-Based Learning(QOBL)mechanism enhances the exploration speed and convergence rate;we name a CQFFA algorithm.The improvements have been made in line with the weaknesses of the FFA algorithm because the FFA algorithm has fallen into the optimal local trap in solving some complex problems or does not have sufficient ability in the intensification component.The results obtained show that the proposed CQFFA model has been significantly improved.It is applied to twenty-three widely-used test functions and compared with similar state-of-the-art algorithms statistically and visually.Also,the CQFFA algorithm has evaluated six real-world engineering problems.The experimental results showed that the CQFFA algorithm outperforms other competitor algorithms.
基金supported by the National Natural Science Foundation of China under grant no.51705182.
文摘The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency.
基金Hunan Provincial Natural Science Foundation of China (No. 06JJ50103)the National Natural Science Foundationof China (No. 60375001)
文摘Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.
文摘The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2024R809).
文摘Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios.
文摘There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral emissivity and true temperature of any object only based on the measured brightness temperature data. In order to improve the accuracy of approximate calculations, the local minimum problem in the algorithm must be solved. Therefore, the authors design an optimal algorithm, i.e. a hybrid chaotic optimal algorithm, in which the chaos is used to roughly seek for the parameters involved in the model, and then a second seek for them is performed using the steepest descent. The modelling of emissivity settles the problems in assumptive models in multi-spectral theory.