期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Bimetallic Ni_(x)Fe_(2-x)P cocatalyst with tunable electronic structure for enhanced photocatalytic benzyl alcohol oxidation coupled with H_(2)evolution over red phosphorus 被引量:1
1
作者 Shuang Li Haili Lin +5 位作者 Xuemei Jia Xin Jin Qianlong Wang Xinyue Li Shifu Chen Jing Cao 《Chinese Journal of Catalysis》 2025年第3期363-377,共15页
Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely bee... Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts. 展开更多
关键词 Bimetallic phosphides cocatalyst Composition regulation Red phosphorus Selective oxidation of benzyl alcohol H_(2)
在线阅读 下载PDF
Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde
2
作者 Yujie Zhan Chengqin Zhong +8 位作者 Mingli Bi Yafei Liang Yuji Qi Jiaqi Chen Jiaxu Liu Xindang Zhang Shuai Zhang Yehong Wang Feng Wang 《Chinese Journal of Catalysis》 2025年第5期334-343,共10页
Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains ... Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde. 展开更多
关键词 Iron-vanadium Selective oxidation METHANOL FORMALDEHYDE Synergistic effect
在线阅读 下载PDF
Enhanced selective oxidation of dimethyl ether to formaldehyde by MoO_(3)-Fe_(2)(MoO_(4))_(3) interaction over iron-molybdate catalysts
3
作者 Yafei Liang Yuji Qi +6 位作者 Mingli Bi Zhen Shi Junju Mu Shushuang Li Jian Zhang Yehong Wang Feng Wang 《Journal of Energy Chemistry》 2025年第7期832-841,共10页
The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of ... The efficient catalytic conversion of fossil-based low-carbon small molecules to oxygen-containing chemicals is an attractive research topic in the fields of energy and chemical engineering.The selective oxidation of dimethyl ether(DME),which is derived from fossil resources,represents a promising approach to producing high-concentration formaldehyde with low energy consumption.However,there is still a lack of catalysts achieving satisfactory conversion of DME with high selectivity for formaldehyde under mild conditions.In this work,an efficient iron-molybdate(FeMo)catalyst was developed for the selective oxidation of DME to formaldehyde.The DME conversion of 84% was achieved with a superior formaldehyde selectivity(77%)at 300℃,a performance that is superior to all previously reported results.In an approximately 550 h continuous reaction,the catalyst maintained a conversion of 64% and a formaldehyde selectivity of 79%.Combined X-ray diffraction(XRD),Transmission electron microscope(TEM),Ultraviolet-visible spectroscopy(UV-Vis),Hydrogen temperature-programmed reduction(H_(2)-TPR),Fourier transform infrared(FT-IR)analyses,along with density functional theory(DFT)calculations,demonstrated that the excellent FeMo catalyst was composed of active Fe_(2)(MoO_(4))_(3)and MoO_(3)phases,and there was an interaction between them,which contributed to the efficient DME dissociation and smooth hydrogen spillover,leading to a superior DME conversion.With the support of DME/O_(2)pulse experiments,in-situ Raman,in-situ Dimethyl ether infrared spectroscopy(DME-IR)and DFT calculation results,a Mars-van Krevelen(MvK)reaction mechanism was proposed:DME was dissociated on the interface between Fe_(2)(MoO_(4))_(3)and MoO_(3)phases to form active methoxy species firstly,and it dehydrogenated to give hydrogen species;the generated hydrogen species smoothly spilled over from Fe_(2)(MoO_(4))_(3)to MoO_(3)enhanced by the interaction between Fe_(2)(MoO_(4))_(3)and MoO_(3);then the hydrogen species was consumed by MoO_(3),leading to a reduction of MoO_(3),and finally,the reduced MoO_(3)was re-oxidized by O_(2),returning to the initial state.These findings offer valuable insights not only for the development of efficient FeMo catalysts but also for elucidating the reaction mechanism involved in the oxidation of DME to formaldehyde,contributing to the optimized utilization of DME derived from fossil resources. 展开更多
关键词 Dimethyl ether Selective oxidation FeMo catalyst FORMALDEHYDE INTERACTION
暂未订购
Development of multifunctional Co_(3)O_(4)-modified ZnIn_(2)S_(4) photocatalyst for the selective oxidation of biomass-derived 5-hydroxymethylfurfural
4
作者 Shan Jiang Zhenpan Chen +3 位作者 Shaofeng Xiong Hongxin Zhao Xishun Xiao Zhigang Shen 《Journal of Energy Chemistry》 2025年第10期830-838,共9页
The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate... The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF. 展开更多
关键词 PHOTOCATALYSIS Selective oxidation COCATALYST 5-HYDROXYMETHYLFURFURAL
在线阅读 下载PDF
Selective ozone oxidation of ammonium ion catalyzed by carbon nanocage-supported Co_(3)O_(4):Role of oxygen vacancies and electron transfer sites
5
作者 Yu Gao Xiemin Liu +4 位作者 Weida Chen Jin Jin Xizhang Wang Feng Zhang Xiankun Wu 《Journal of Environmental Sciences》 2025年第9期151-162,共12页
For the effective treatment of the wastewater with low-medium concentration ammonia nitrogen and low strength COD,a high-performance Co_(3)O_(4) catalyst supported on carbon nanocages(CNCs)was prepared.By isovolumetri... For the effective treatment of the wastewater with low-medium concentration ammonia nitrogen and low strength COD,a high-performance Co_(3)O_(4) catalyst supported on carbon nanocages(CNCs)was prepared.By isovolumetric im pregnation,Co_(3)O_(4) could be uniformly dispersed on surface of CNCs,which possess tiny particle size and strong electron transfer capability.The catalytic performance of the prepared Co_(3)O_(4)/CNCs catalysts with different Co_(3)O_(4) loadings was systematically evaluated and compared with Co_(3)O_(4)/CNTs.It is found that 20 wt.%Co_(3)O_(4)/CNCs shows the best catalytic performance,achieving an ammonia nitrogen conversion rate of 71.0%and a nitrogen selectivity of 81.8%.Compared to commonly used Co_(3)O_(4),ammonia conversion and nitrogen selectivity of Co_(3)O_(4)/CNCs increased by 28.9%and 15.8%respectively.In the five consecutive cycles,the catalytic activity remained stable.The mechanism that CNCs support effectively increases the surface oxygen vacancies of Co_(3)O_(4) through XPS analysis was also elucidated,and DFT calculations confirm strong electron transfer between CNCs and Co_(3)O_(4),rendering Co_(3)O_(4) nanoparticles as the primary catalytic active sites.The results may contribute to the development of highperformance catalytic ozone oxidation catalysts for ammonia nitrogen. 展开更多
关键词 Selective ozone oxidation Carbon nanocages Oxygen vacancies Electron transfer
原文传递
MOF encapsulation derived slow-release oxygen species to enhance the activity and selectivity of methane selective oxidation:A transient DRIFTs Study
6
作者 Ke-Xin Li Hao Yuan +1 位作者 Ralph T.Yang Zhun Hu 《Chinese Journal of Catalysis》 2025年第11期202-214,共13页
The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))a... The methane selective oxidation was a"holy grail"reaction.However,peroxidation and low selectivity limited the application.Herein,we combined three Au contents with TiO_(2)in both encapsulation(xAu@TiO_(2))and surface-loaded(xAu/TiO_(2))ways by MOF derivation strategy,reported a catalyst 0.5Au@TiO_(2)exhibited a CH_(3)OH yield of 32.5μmol·g^(-1)·h^(-1)and a CH_(3)OH selectivity of 80.6%under catalytic conditions of only CH_(4),O_(2),and H_(2)O.Mechanically speaking,the catalytic activity was controlled by both electron-hole separation efficiency and core-shell structure.The interfacial contact between Au nanoparticles and TiO_(2)in xAu@TiO_(2)and xAu/TiO_(2)induced the formation of oxygen vacancies,with 0.5 Au content showing the highest oxygen vacancy concentration.At the same Au content,xAu@TiO_(2)generated more oxygen vacancies than xAu/TiO_(2).The oxygen vacancy acted as an effective electron cold trap,which enhanced the photogenerated carrier separation efficiency and thereby improved the catalytic activity.In-situ DRIFTs revealed that the isolated OH(non-hydrogen bond adsorption)were key species for the methane selective oxidation,playing a role in the activation of CH_(4)to^(*)CH_(3).However,an overabundance of isolated OH led to severe overoxidation.Fortunately,the core-shell structure over xAu@TiO_(2)provided a slow-release environment for isolated OH through the intermediate state of^(*)OH(hydrogen bond adsorption)to balance the formation rate and consumption rate of isolated OH,doubling the methanol yield and increasing the>29%selectivity.These results showed a new strategy for the control of the overoxidation rate via a strategy of MOF encapsulation followed by pyrolytic derivation for methane selective oxidation. 展开更多
关键词 Methane selective oxidation Metal-organic framework derived Reactive oxygen species modulation Hydrogen bonded adsoprotion hydroxyl groups
在线阅读 下载PDF
The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations
7
作者 Cheng Liu Ying-Zhang Shi +4 位作者 Qi Chen Bing-Hua Ye Jin-Hong Bi Jimmy C.Yu Ling Wu 《Rare Metals》 2025年第4期2462-2473,共12页
Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defect... Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defects have been developed for the photocatalytic selective oxidation of benzylamine(BA)and thioanisole(TA)under visible light.The introduction of missing-linker defects promotes the formation of unsaturated Ce sites with a high Ce3+content.It also generates a high concentration of oxygen vacancies.In situ Fourier transform infrared spectroscopy(FTIR)results revealed that BA and TA molecules were activated on coordinatively unsaturated Ce sites via the H-N…Ce and the C-S…Ce interactions,respectively.Simulated in situ electron paramagnetic resonance(EPR)data indicate that O_(2) activation and reduction occur at coordinatively unsaturated Ce^(3+)sites to form·O_(2)^(-).This is accelerated by the Ce^(3+)/Ce^(4+)redox cycle associated with the photogenerated electrons.The corresponding photogenerated holes are involved in the deprotonation of the activated BA and TA.The most active sample exhibits 98.4%and 95.5%conversion rates for BA and TA oxidation.Mechanisms for the molecular activation are proposed at the molecular level. 展开更多
关键词 UiO-66(Ce) Defective MOFs Photocatalytic selective organic oxidation Molecular activation Ce^(3+)/Ce^(4+)redox cycling
原文传递
Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia 被引量:5
8
作者 石磊 胡臻浩 +1 位作者 邓高明 李文翠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1920-1927,共8页
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c... A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation. 展开更多
关键词 Copper manganese oxide Selective etchingRedox property CO oxidation Co-precipitation
在线阅读 下载PDF
Selective oxidation of methane to syngas using Pr_(0.7)Zr_(0.3)O_(2-δ): Stability of oxygen carrier
9
作者 杜云鹏 祝星 +2 位作者 王华 魏永刚 李孔斋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1248-1253,共6页
Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical pro... Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical properties of Pr0.7Zr0.3O2-δ during the redox process was studied by means of X-ray diffraction(XRD), H2 temperature-programmed reduction(H2-TPR), O2temperature-programmed desorption(O2-TPD), Brunauer-Emmett-Teller(BET) surface area measurement and X-ray photoelectron spectroscopy(XPS) technologies. The results indicated that Pr0.7Zr0.3O2-δ solid solution showed the high activity for the methane conversion to syngas with a high CO selectivity in the range of 83.5%-88.1%. Though Pr-Zr solid solution possessed high thermal stability, lattice oxygen was obviously reduced for the recycled sample due to decreased surface oxygen which promoted oxygen vacancies. The increased oxygen vacancies seemed to enhance the oxygen transfer ability in the redox process and provided sufficient oxygen for the methane selective oxidation, resulting in a satisfactory activity. The problem of hot pot was avoided by comparing fresh, aged and recycle sample in the reaction. 展开更多
关键词 METHANE selective oxidation oxygen carrier Pr-Zr solid solution SYNGAS STABILITY
在线阅读 下载PDF
The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen 被引量:8
10
作者 校准 詹望成 +3 位作者 郭耘 郭杨龙 龚学庆 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期273-280,共8页
Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desor... Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen. 展开更多
关键词 SAPO-5 molecular sieve COBALT CYCLOHEXANE Selective oxidation OXYGEN
在线阅读 下载PDF
Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides:Effect of the calcination temperature 被引量:3
11
作者 吴明周 詹望成 +5 位作者 郭耘 王筠松 郭杨龙 龚学庆 王丽 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期184-192,共9页
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ... The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability. 展开更多
关键词 Manganese oxide catalyst Selective oxidation of cyclohexane OXYGEN Calcination temperature Solvent-free reaction
在线阅读 下载PDF
Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica 被引量:12
12
作者 Junfeng Zhang Yan Huang Xia Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期273-277,共5页
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i... The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment. 展开更多
关键词 selective catalytic oxidation of NO nitrogen monoxide mesoporous silica IRON MANGANESE
在线阅读 下载PDF
Preparation and characterization of Ce_(1-x)Fe_xO_2 complex oxides and its catalytic activity for methane selective oxidation 被引量:7
13
作者 李孔斋 王华 +1 位作者 魏永刚 刘明春 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期245-249,共5页
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ... A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃. 展开更多
关键词 Ce1-xFexO2 complex oxides H2-TPR lattice oxygen methane selective oxidation rare earths
在线阅读 下载PDF
Morphology evolution of acetic acid-modulated MIL-53(Fe)for efficient selective oxidation of H2S 被引量:7
14
作者 Xiaoxiao Zheng Sihui Qi +3 位作者 Yanning Cao Lijuan Shen Chaktong Au Lilong Jiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期279-287,共9页
MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100... MIL-53(Fe)was synthesized using a“modulator approach”that utilizes acetic acid(HAc)as an additive to control the size and morphology of the resulting crystals.We demonstrate that after activation under vaccum at 100℃,the MIL-53(Fe)functions well for H2S selective oxidation.The introduction of acetic acid in the presence of benzene-1,4-dicarboxylic acid(H2BDC)would result in a series of MIL-53(Fe)nanocrystals(denoted as MIL-53(Fe)-xH,x stands for the volume of added HAc with morphology evoluting from irregular particles to short hexagonal columns.The vacuum treatment facilitates the removal of acetate groups,thus generating Fe3+Lewis acid sites.Consequently,the resulted MIL-53(Fe)-xH exhibits good catalytic activity(98%H2S conversion and 92%sulfur selectivity)at moderate reaction temperatures(100–190℃).The MIL-53(Fe)-5H is superior to the traditional iron-based catalysts,showing stable performance in a test period of 55 h. 展开更多
关键词 Fe-metal-organic frameworks Hydrogen sulfide Selective oxidation Controllable synthesis Acetic acid MODULATION
在线阅读 下载PDF
Selective Oxidation of Light Hydrocarbons Using Lattice Oxygen Instead of Molecular Oxygen 被引量:5
15
作者 沈师孔 李然家 +1 位作者 周吉萍 余长春 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期649-655,共7页
In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane t... In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen. For partial oxidation of methane to synthesis gas over LaFeO3 and La0.8Sr0.2FeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode. 展开更多
关键词 selective oxidation lattice oxygen N-BUTANE maleic anhydride Ce-Fe promoted VPO catalysts METHANE synthesis gas La1-xSrxFeO3 perovskite catalysts
在线阅读 下载PDF
Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine 被引量:8
16
作者 Xin Xing Na Li +4 位作者 Jie Cheng Yonggang Sun Zhongshen Zhang Xin Zhang Zhengping Hao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第10期55-63,共9页
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic d... In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350 ℃ over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5(25) exhibited the highest selectivity to N2, exceeding 90% at 350 ℃. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Bronsted acidity and the isolated Cu^2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation. 展开更多
关键词 CH3CH2CH2CH2NH2 Selective oxidation CU-ZSM-5 Cu species Acid sites
原文传递
Selective catalytic oxidation of NO with O_2 over Ce-doped MnO_x/TiO_2 catalysts 被引量:27
17
作者 Xiaohai Li Shule Zhang +2 位作者 Yong Jia Xiaoxiao Liu Qin Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期17-24,共8页
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ... A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated. 展开更多
关键词 selective catalytic oxidation (SCO) of NO MnOx/TiO2 catalysts Ce-doped catalysts
在线阅读 下载PDF
Rare earth oxide modified Cu-Mn compounds supported on TiO_2 catalysts for low temperature selective catalytic oxidation of ammonia and in lean oxygen 被引量:6
18
作者 段开娇 唐晓龙 +2 位作者 易红宏 宁平 王文琴 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期338-342,共5页
Selective catalytic oxidation(SCO) of ammonia was carried out over Cu-Mn compounds catalysts modified with trivalent rare earth oxide Ce2O3 and La2O3 respectively.TiO2 was used as support and different ratio of O2 wer... Selective catalytic oxidation(SCO) of ammonia was carried out over Cu-Mn compounds catalysts modified with trivalent rare earth oxide Ce2O3 and La2O3 respectively.TiO2 was used as support and different ratio of O2 were tested in order to find an appropriate O2 concentration(vol.%),and the results showed that 1%O2(vol.%) was propitious to SCO of ammonia.The effects of the two rare earth oxides modified catalysts Ce2O3-Cu-Mn/TiO2 and La2O3-Cu-Mn/TiO2 on the catalytic activity and selectivity of ammonia oxidation were investigated under the reaction condition of 500 ppm ammonia,1%O2(vol.%),at the temperature from 125 to 250 oC.The results revealed the beneficial role of Ce2O3 and La2O3 in catalytic activity at low temperature and lean oxygen concentration,while the modification with Ce2O3 and La2O3 led to the negative influence on N2 selectivity.For the catalysts modified with Ce showed lower NO and N2O selectivity than the catalysts modified with La,then the effects of different Ce loadings on catalytic activity and selectivity were also considered,in combination with catalysts preparation methods,which include incipient wet impregnation,sol-gel method and co-precipitation.Results revealed that the catalysts prepared by sol-gel method obtained preferable catalytic activity compared with the others,reaching 99% ammonia at 200 oC,whereas 96% NO was detected.It also indicated that different catalyst preparation method significantly determined production distribution. 展开更多
关键词 AMMONIA selective catalytic oxidation (SCO) rare earth oxide Cu-Mn compounds low temperature
原文传递
Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base‐free aqueous medium at room temperature 被引量:5
19
作者 Juanjuan Liu Shihui Zou +3 位作者 Jiachao Wu Hisayoshi Kobayashi Hongting Zhao Jie Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第6期1081-1089,共9页
The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry.In this work,we present a systematic study of a Pt/ZnO catalyst for the se... The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry.In this work,we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base‐free aqueous conditions.Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol,which subsequently reacts with the activated oxygen species on the Pt catalyst,producing benzaldehyde.The resulting solid achieves a high conversion(94.1±5.1%in 10 h)of benzyl alcohol and nearly 100%selectivity to benzalde‐hyde with ambient air as the oxidant.In addition,by introducing a small amount of Bi(1.78 wt%)into Pt/ZnO,we can further enhance the activity by 350%. 展开更多
关键词 Pt/ZnO Selective oxidation Benzyl alcohol C–H activation Aqueous medium Room temperature
在线阅读 下载PDF
Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols 被引量:8
20
作者 Guilong Lu Xiubing Huang +3 位作者 Yang Li Guixia Zhao Guangsheng Pang Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期8-15,共8页
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and ... Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis. 展开更多
关键词 Metal organic frameworks Covalent organic frameworks Core-shell structure PHOTOCATALYST Selective alcohol oxidation
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部