In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the...To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.展开更多
BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their effi...BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their efficacy is limited.This study investigated whether combining SSRIs with traditional Chinese medicine(TCM)Free San could enhance their therapeutic effects.AIM To evaluate the clinical efficacy and safety of combining SSRIs with Free San in treating PSD,and to assess its impact on HPA axis function.METHODS Ninety-two patients with PSD were enrolled and randomly divided into control groups(n=46)and study groups(n=46).The control group received the SSRI paroxetine alone,whereas the study group received paroxetine combined with Free San for 4 weeks.Hamilton Depression Scale and TCM syndrome scores were assessed before and after treatment.Serum serotonin,norepinephrine,cortisol,cor-ticotropin-releasing hormone,and adrenocorticotropic hormone were measured.The treatment responses and adverse reactions were recorded.RESULTS After treatment,the Hamilton Depression Scale and TCM syndrome scores were significantly lower in the study group than in the control group(P<0.05).Serum serotonin and norepinephrine levels were significantly higher in the study group than in the control group,whereas cortisol,corticotropin-releasing hormone,and adrenocorticotropic hormone levels were significantly lower(P<0.05).The total efficacy rates were 84.78%and 65.22%in the study and control groups,respectively(P<0.05).No significant differences in adverse reactions were observed between the two groups(P>0.05).CONCLUSION Combining SSRIs with Free San can enhance therapeutic efficacy,improve depressive symptoms,and regulate HPA axis function in patients with PSD with good safety and clinical application value.展开更多
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo...Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.展开更多
Atomically ordered precious intermetallic nanoparticles have garnered significant attention for diverse applications due to their well-defined surface atomic arrangements and exceptional electronic and geometric prope...Atomically ordered precious intermetallic nanoparticles have garnered significant attention for diverse applications due to their well-defined surface atomic arrangements and exceptional electronic and geometric properties.However,synthesizing non-precious ordered intermetallics that exhibit high stability under operating conditions remains a formidable challenge,primarily owing to their strong oxyphilicity,highly negative reduction potentials,and low corrosion resistance.In this work,we report a facile yet versatile seed-mediated solid-phase approach for fabricating uniform Ni_(3)Ga_(1) intermetallic nanocubes(NCs)fully encapsulated within N-doped carbon layers(denoted as Ni_(3)Ga_(1)@NC-800).Extensive characterization confirms the formation of a unique core-shell architecture,with atomic-resolution structural analysis and X-ray absorption fine structure measurements unequivocally verifying the atomically ordered Ni_(3)Ga_(1) intermetallic phase.The Ni_(3)Ga_(1)@NC-800 catalyst demonstrates exceptional performance in the 1,4-hydrogenation of α,β-unsaturated carbonyl compounds,exhibiting both remarkable activity and exclusive selectivity while maintaining high stability over multiple reaction cycles without observable performance decay.Combined experimental and theoretical calculations reveal that the strong interatomic p-d orbital hybridization facilitates electron transfer from Ga to Ni atoms,resulting in electron localization on ordered Ni atoms.This electronic configuration positively influences H_(2)activation and optimizes substrate adsorption strength,thereby substantially improving catalytic efficiency.Furthermore,this synthetic strategy proves generalizable,successfully extending to the synthesis of other non-precious ordered Ni_(1)Sn_(1) and Ni_(2)In_(3) intermetallics confined within N-doped carbon matrices.展开更多
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphou...Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).展开更多
This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of t...This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes(TR+CG-H3G).The Cockle Shell(CS)was used as a natural bio-adsorbent.The characterizations of CS were investigated by Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDX)and Brunauer–Emmett–Teller(BET).The adsorption potential of Cockle Shells was tested in two cases(single and binary system)and determined by:contact time(0–60 min),bio-adsorption dose(3–15 g/L),initial concentration(10–300 mg/L),temperature(22–61°C)and pH solution(2–12).The study of bio-adsorption(equilibrium and kinetics)was conducted at 22°C.The kinetic studies demon-strated that a pseudo-second-order adsorption mechanism had a good correlation coefficient(R2≥0.999).The Langmuir isotherm modeling provided a well-defined description of TR and CG-H3G bio-adsorption on cockle shells,exhibiting maximum capacities of 29.41 and 3.69 mg/g respectively at 22°C.The thermodynamic study shows that the reaction between the TR,CG-H3G dyes molecules and the bio-adsorbent is exothermic,spontaneous in the range of 22–31°C with the aleatory character decrease at the solid-liquid interface.The study of selectivity in single and binary systems has been performed under optimal operating conditions using the industrial textile rejection pH(pH=6.04).CG-H3G dye is found to have a higher selectivity than TR in single(0–60 min)and binary systems with a range of 6–45 min,as shown by the selectivity measurement.It was discovered that CS has the capability to remove both CG-H3G and TR dyes in both simple and binary systems,making it a superior bio-adsorbent.展开更多
The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces...The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.展开更多
Radioactive microspheres have demonstrated excellent therapeutic effects and good tolerance in the treatment of unresectable primary and secondary liver malignancies.This is attributed to precise embolization and pote...Radioactive microspheres have demonstrated excellent therapeutic effects and good tolerance in the treatment of unresectable primary and secondary liver malignancies.This is attributed to precise embolization and potent anti-tumor effect.However,certain limitations such as unstable loading,perfusion stasis,heterogeneous distribution,ectopic distribution,and insufficient dosage,restrict their clinical application.Herein,a novel personalized Y-90 carbon microsphere with high uniformity,high specific activity and high availability(^(90)Y-HUACM)is presented.It is synthesized through planar molecular complex adsorption and chemical deposition solidification.^(90)Y-HUACM exhibited controllable size,excellent biocompatibility,outstanding in vitro and in vivo stability.The radiolabeling efficiency of Y-90 exceeded 99%and the leaching rate of Y-90 is far below 0.1%.Furthermore,the excellent anti-tumor effect,nuclide loading stability,anti-reflux characteristics,precise embolization,and biosafety of^(90)Y-HUACM were validated in a rabbit VX2liver tumor model.In summary,this new,high-performance,and customizable radioactive microsphere provides a superior choice for selective internal radiation treatment of advanced liver cancer is expected to be rapidly applied in clinical practice.展开更多
Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor ...Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold.展开更多
Austenitic stainless steel(ASS)is a common material used in high-pressure hydrogen systems.Prolonged exposure to high-pressure hydrogen can cause hydrogen embrittlement(HE),raising significant safety concerns.Selectiv...Austenitic stainless steel(ASS)is a common material used in high-pressure hydrogen systems.Prolonged exposure to high-pressure hydrogen can cause hydrogen embrittlement(HE),raising significant safety concerns.Selective Laser Melting(SLM),known for its high precision,is a promising additive manufacturing technology that has been widely adopted across various industries.Studies have reported that under certain SLM manufacturing conditions and process parameters,the HE resistance of SLM ASS is significantly better than that of conventionally manufactured(CM)ASS,showing great potential for application in high-pressure hydrogen systems.Thus,studying the HE of SLM ASS is crucial for further improving the safety of high-pressure hydrogen systems.This paper provides an overview of the SLM process,reviews the mechanisms of HE and their synergistic effects,and analyzes the HE characteristics of SLM ASS.Additionally,it examines the influence of unique microstructures and SLM process variables on HE of SLM ASS and offers recommendations for future research to enhance the safety of high-pressure hydrogen systems.展开更多
Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N c...Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N catalysis.Monosubstitu-tion C—N bond formation reaction catalyzed by K_(2)CO_(3) also gave novel enol-based target products.This method is simple and mild,with good chemoselectivity,excellent substrate compatibility and tolerance for various functional groups,and achieves gram-scale synthesis.The reaction is a nucleophilic substitution process without the involvement of free radicals.展开更多
ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical...ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.展开更多
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ...We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.展开更多
Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defect...Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defects have been developed for the photocatalytic selective oxidation of benzylamine(BA)and thioanisole(TA)under visible light.The introduction of missing-linker defects promotes the formation of unsaturated Ce sites with a high Ce3+content.It also generates a high concentration of oxygen vacancies.In situ Fourier transform infrared spectroscopy(FTIR)results revealed that BA and TA molecules were activated on coordinatively unsaturated Ce sites via the H-N…Ce and the C-S…Ce interactions,respectively.Simulated in situ electron paramagnetic resonance(EPR)data indicate that O_(2) activation and reduction occur at coordinatively unsaturated Ce^(3+)sites to form·O_(2)^(-).This is accelerated by the Ce^(3+)/Ce^(4+)redox cycle associated with the photogenerated electrons.The corresponding photogenerated holes are involved in the deprotonation of the activated BA and TA.The most active sample exhibits 98.4%and 95.5%conversion rates for BA and TA oxidation.Mechanisms for the molecular activation are proposed at the molecular level.展开更多
The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red...The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.展开更多
Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade...Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.展开更多
The environment-friendly and efficient selective separation of chalcopyrite and molybdenite poses a challenge in mineral pro-cessing.In this study,gum Arabic(GA)was initially proposed as a novel depressant for the sel...The environment-friendly and efficient selective separation of chalcopyrite and molybdenite poses a challenge in mineral pro-cessing.In this study,gum Arabic(GA)was initially proposed as a novel depressant for the selective separation of molybdenite from chalcopyrite during flotation.Microflotation results indicated that the inhibitory capacity of GA was stronger toward molybdenite than chalcopyrite.At pH 8.0 with 20 mg/L GA addition,the recovery rate of chalcopyrite in the concentrate obtained from mixed mineral flota-tion was 67.49%higher than that of molybdenite.Furthermore,the mechanism of GA was systematically investigated by various surface characterization techniques.Contact angle tests indicated that after GA treatment,the hydrophobicity of the molybdenite surface signifi-cantly decreased,but that of the chalcopyrite surface showed no apparent change.Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy revealed a weak interaction force between GA and chalcopyrite.By contrast,GA was primarily adsorbed onto the molybdenite surface through chemical chelation,with possible contributions from hydrogen bonding and hydrophobic interactions.Pre-adsorbed GA could prevent butyl xanthate from being adsorbed onto molybdenite.Scanning electron microscopy–energy-dispersive spectrometry further indicated that GA was primarily adsorbed onto the“face”of molybdenite rather than the“edge.”Therefore,GA could be a promising molybdenite depressant for the flotation separation of Cu–Mo.展开更多
The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate...The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF.展开更多
The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copo...The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer(AAAMPS)was first used as the depressant in fluorite flotation,and its effect on the flotation separation of fluorite and dolomite in sodium oleate(NaOL)system was investigated.The depression mechanism was analyzed by contact angle measurement,zeta potential test,FTIR and XPS analyses.The micro-flotation test results showed that dolomite can be inhibited in fluorite flotation system in the addition of 2 mg/L AA-AMPS and 20 mg/L NaOL at pH 10.The CaF_(2) grade increased from 49.85%in the artificial mixed mineral to 89.60%in the fluorite concentrate.The depression mechanism indicated that AA-AMPS could adsorb strongly on dolomite surface by the chelation with Ca and Mg active sites.Moreover,the further adsorption of NaOL on dolomite surface was prevented by the AA-AMPS adsorption,but that on fluorite surface was little affected,thereby increasing the difference in the hydrophobicity and floatability of the two minerals.展开更多
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
基金National Natural Science Foundation of China(51504138,51674118,52271177)Hunan Provincial Natural Science Foundation of China(2023JJ50181)Supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2024-022)。
文摘To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.
基金Supported by Open Project of Jiangsu Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Geriatric Diseases,No.202232.
文摘BACKGROUND Post-stroke depression(PSD)is associated with hypothalamic-pituitary-adrenal(HPA)axis dysfunction and neurotransmitter deficits.Selective serotonin reuptake inhibitors(SSRIs)are commonly used,but their efficacy is limited.This study investigated whether combining SSRIs with traditional Chinese medicine(TCM)Free San could enhance their therapeutic effects.AIM To evaluate the clinical efficacy and safety of combining SSRIs with Free San in treating PSD,and to assess its impact on HPA axis function.METHODS Ninety-two patients with PSD were enrolled and randomly divided into control groups(n=46)and study groups(n=46).The control group received the SSRI paroxetine alone,whereas the study group received paroxetine combined with Free San for 4 weeks.Hamilton Depression Scale and TCM syndrome scores were assessed before and after treatment.Serum serotonin,norepinephrine,cortisol,cor-ticotropin-releasing hormone,and adrenocorticotropic hormone were measured.The treatment responses and adverse reactions were recorded.RESULTS After treatment,the Hamilton Depression Scale and TCM syndrome scores were significantly lower in the study group than in the control group(P<0.05).Serum serotonin and norepinephrine levels were significantly higher in the study group than in the control group,whereas cortisol,corticotropin-releasing hormone,and adrenocorticotropic hormone levels were significantly lower(P<0.05).The total efficacy rates were 84.78%and 65.22%in the study and control groups,respectively(P<0.05).No significant differences in adverse reactions were observed between the two groups(P>0.05).CONCLUSION Combining SSRIs with Free San can enhance therapeutic efficacy,improve depressive symptoms,and regulate HPA axis function in patients with PSD with good safety and clinical application value.
基金the National Nature Science Foundation of China for Excellent Young Scientists Fund(32222058)Fundamental Research Foundation of CAF(CAFYBB2022QB001).
文摘Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.
基金financially supported by the program of the National Natural Science Foundation of Shandong Province(No.ZR2023ZD23)the Shandong Province Key Research and Development Plan(No.2023CXGC010607).
文摘Atomically ordered precious intermetallic nanoparticles have garnered significant attention for diverse applications due to their well-defined surface atomic arrangements and exceptional electronic and geometric properties.However,synthesizing non-precious ordered intermetallics that exhibit high stability under operating conditions remains a formidable challenge,primarily owing to their strong oxyphilicity,highly negative reduction potentials,and low corrosion resistance.In this work,we report a facile yet versatile seed-mediated solid-phase approach for fabricating uniform Ni_(3)Ga_(1) intermetallic nanocubes(NCs)fully encapsulated within N-doped carbon layers(denoted as Ni_(3)Ga_(1)@NC-800).Extensive characterization confirms the formation of a unique core-shell architecture,with atomic-resolution structural analysis and X-ray absorption fine structure measurements unequivocally verifying the atomically ordered Ni_(3)Ga_(1) intermetallic phase.The Ni_(3)Ga_(1)@NC-800 catalyst demonstrates exceptional performance in the 1,4-hydrogenation of α,β-unsaturated carbonyl compounds,exhibiting both remarkable activity and exclusive selectivity while maintaining high stability over multiple reaction cycles without observable performance decay.Combined experimental and theoretical calculations reveal that the strong interatomic p-d orbital hybridization facilitates electron transfer from Ga to Ni atoms,resulting in electron localization on ordered Ni atoms.This electronic configuration positively influences H_(2)activation and optimizes substrate adsorption strength,thereby substantially improving catalytic efficiency.Furthermore,this synthetic strategy proves generalizable,successfully extending to the synthesis of other non-precious ordered Ni_(1)Sn_(1) and Ni_(2)In_(3) intermetallics confined within N-doped carbon matrices.
基金supported by the National Natural Science Foundation of China(22175136)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23127)the Fundamental Research Funds for the Central Universities(xtr052024009).
文摘Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).
基金supported by the University Salah Boubnider-Constantine 3 (Algeria).
文摘This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes(TR+CG-H3G).The Cockle Shell(CS)was used as a natural bio-adsorbent.The characterizations of CS were investigated by Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDX)and Brunauer–Emmett–Teller(BET).The adsorption potential of Cockle Shells was tested in two cases(single and binary system)and determined by:contact time(0–60 min),bio-adsorption dose(3–15 g/L),initial concentration(10–300 mg/L),temperature(22–61°C)and pH solution(2–12).The study of bio-adsorption(equilibrium and kinetics)was conducted at 22°C.The kinetic studies demon-strated that a pseudo-second-order adsorption mechanism had a good correlation coefficient(R2≥0.999).The Langmuir isotherm modeling provided a well-defined description of TR and CG-H3G bio-adsorption on cockle shells,exhibiting maximum capacities of 29.41 and 3.69 mg/g respectively at 22°C.The thermodynamic study shows that the reaction between the TR,CG-H3G dyes molecules and the bio-adsorbent is exothermic,spontaneous in the range of 22–31°C with the aleatory character decrease at the solid-liquid interface.The study of selectivity in single and binary systems has been performed under optimal operating conditions using the industrial textile rejection pH(pH=6.04).CG-H3G dye is found to have a higher selectivity than TR in single(0–60 min)and binary systems with a range of 6–45 min,as shown by the selectivity measurement.It was discovered that CS has the capability to remove both CG-H3G and TR dyes in both simple and binary systems,making it a superior bio-adsorbent.
基金supported by the National Key Research and Development Program of China(No.2019YFC1803501)the National Natural Science Foundation of China(No.52074357)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ30713)the Vanadium Titanium Union Foundationthe Project of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources,China。
文摘The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.
基金supported by the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2018ZX09201018–028)the nuclear energy development projects of China during the 13thFive Year Plan periodthe key research and development project of the Sichuan Provincial Department of Science and Technology(No.18ZDYF1466)。
文摘Radioactive microspheres have demonstrated excellent therapeutic effects and good tolerance in the treatment of unresectable primary and secondary liver malignancies.This is attributed to precise embolization and potent anti-tumor effect.However,certain limitations such as unstable loading,perfusion stasis,heterogeneous distribution,ectopic distribution,and insufficient dosage,restrict their clinical application.Herein,a novel personalized Y-90 carbon microsphere with high uniformity,high specific activity and high availability(^(90)Y-HUACM)is presented.It is synthesized through planar molecular complex adsorption and chemical deposition solidification.^(90)Y-HUACM exhibited controllable size,excellent biocompatibility,outstanding in vitro and in vivo stability.The radiolabeling efficiency of Y-90 exceeded 99%and the leaching rate of Y-90 is far below 0.1%.Furthermore,the excellent anti-tumor effect,nuclide loading stability,anti-reflux characteristics,precise embolization,and biosafety of^(90)Y-HUACM were validated in a rabbit VX2liver tumor model.In summary,this new,high-performance,and customizable radioactive microsphere provides a superior choice for selective internal radiation treatment of advanced liver cancer is expected to be rapidly applied in clinical practice.
基金funded by Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(Grant No.:226Z2605G)the Key Project from Hebei Provincial Department of Science and Technology,China(Grant No.:21372601D)+6 种基金Graduate Student Innovation Grant Program of Hebei Medical University,China(Grant No.:XCXZZB202303)Science Research Project of Hebei Education Department,China(Grant Nos.:BJ2025046,and CYZD202501)Program for Young Scientists in the Field of Natural Science of Hebei Medical University,China(Program Nos.:CYCZ2023010,CYCZ2023011,CYQD2021011,CYQD2021015 and CYQD2023012)Traditional Chinese Medicine Administration Project of Hebei Province,China(Project No.:2025427)National Natural Science Foundation of China(Grant No.:32100771)the Hebei Provincial Medical Science Research Project Plan,China(Project Nos.:20240241 and 20220200)Shijiazhuang Science and Technology Bureau,China(Grant Nos.:241200487A,and 07202204).
文摘Increasing evidence showed that histone deacetylase 6(HDAC6)dysfunction is directly associated with the onset and progression of various diseases,especially cancers,making the development of HDAC6-targeted anti-tumor agents a research hotspot.In this study,artificial intelligence(AI)technology and molecular simulation strategies were fully integrated to construct an efficient and precise drug screening pipeline,which combined Voting strategy based on compound-protein interaction(CPI)prediction models,cascade molecular docking,and molecular dynamic(MD)simulations.The biological potential of the screened compounds was further evaluated through enzymatic and cellular activity assays.Among the identified compounds,Cmpd.18 exhibited more potent HDAC6 enzyme inhibitory activity(IC_(50)=5.41 nM)than that of tubastatin A(TubA)(IC_(50)=15.11 nM),along with a favorable subtype selectivity profile(selectivity index z 117.23 for HDAC1),which was further verified by the Western blot analysis.Additionally,Cmpd.18 induced G2/M phase arrest and promoted apoptosis in HCT-116 cells,exerting desirable antiproliferative activity(IC_(50)=2.59 mM).Furthermore,based on long-term MD simulation trajectory,the key residues facilitating Cmpd.18's binding were identified by decomposition free energy analysis,thereby elucidating its binding mechanism.Moreover,the representative conformation analysis also indicated that Cmpd.18 could stably bind to the active pocket in an effective conformation,thus demonstrating the potential for in-depth research of the 2-(2-phenoxyethyl)pyridazin-3(2H)-one scaffold.
基金finncially supported by the National Natural Science Foundation of China(No.52075183)the Guangdong Basic and Applied Research Fundamental(No.2023A1515010692)the Key-Area Research and Development Program of Guangdong Province(Nos.2024B1111080002 and 2020B0404020004).
文摘Austenitic stainless steel(ASS)is a common material used in high-pressure hydrogen systems.Prolonged exposure to high-pressure hydrogen can cause hydrogen embrittlement(HE),raising significant safety concerns.Selective Laser Melting(SLM),known for its high precision,is a promising additive manufacturing technology that has been widely adopted across various industries.Studies have reported that under certain SLM manufacturing conditions and process parameters,the HE resistance of SLM ASS is significantly better than that of conventionally manufactured(CM)ASS,showing great potential for application in high-pressure hydrogen systems.Thus,studying the HE of SLM ASS is crucial for further improving the safety of high-pressure hydrogen systems.This paper provides an overview of the SLM process,reviews the mechanisms of HE and their synergistic effects,and analyzes the HE characteristics of SLM ASS.Additionally,it examines the influence of unique microstructures and SLM process variables on HE of SLM ASS and offers recommendations for future research to enhance the safety of high-pressure hydrogen systems.
文摘Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N catalysis.Monosubstitu-tion C—N bond formation reaction catalyzed by K_(2)CO_(3) also gave novel enol-based target products.This method is simple and mild,with good chemoselectivity,excellent substrate compatibility and tolerance for various functional groups,and achieves gram-scale synthesis.The reaction is a nucleophilic substitution process without the involvement of free radicals.
基金National Defense Science and Technology Project Management Center(2021-JCJQ-JJ-0092)。
文摘ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.
文摘We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance.
基金supported by the National Natural Science Foundation of China(Nos.22272026 and 22272028)the 111 Project(No.D16008)Jinhong Bi thanks the Youth Talent Support Program of Fujian Province(No.00387077).
文摘Defect engineering in metal organic frameworks(MOFs)has captured significant attention in the field of photocatalysis.A series of UiO-66(Ce)(UiO=University of Oslo)MOFs with different contents of missing-linker defects have been developed for the photocatalytic selective oxidation of benzylamine(BA)and thioanisole(TA)under visible light.The introduction of missing-linker defects promotes the formation of unsaturated Ce sites with a high Ce3+content.It also generates a high concentration of oxygen vacancies.In situ Fourier transform infrared spectroscopy(FTIR)results revealed that BA and TA molecules were activated on coordinatively unsaturated Ce sites via the H-N…Ce and the C-S…Ce interactions,respectively.Simulated in situ electron paramagnetic resonance(EPR)data indicate that O_(2) activation and reduction occur at coordinatively unsaturated Ce^(3+)sites to form·O_(2)^(-).This is accelerated by the Ce^(3+)/Ce^(4+)redox cycle associated with the photogenerated electrons.The corresponding photogenerated holes are involved in the deprotonation of the activated BA and TA.The most active sample exhibits 98.4%and 95.5%conversion rates for BA and TA oxidation.Mechanisms for the molecular activation are proposed at the molecular level.
文摘The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.
基金supported by the National Natural Science Foundation of China (Nos. 22174014 and 22074015)。
文摘Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2904502 and 2022YFC2904501)the Major Science and Technology Projects in Yunnan Province,China(No.202202AB080012).
文摘The environment-friendly and efficient selective separation of chalcopyrite and molybdenite poses a challenge in mineral pro-cessing.In this study,gum Arabic(GA)was initially proposed as a novel depressant for the selective separation of molybdenite from chalcopyrite during flotation.Microflotation results indicated that the inhibitory capacity of GA was stronger toward molybdenite than chalcopyrite.At pH 8.0 with 20 mg/L GA addition,the recovery rate of chalcopyrite in the concentrate obtained from mixed mineral flota-tion was 67.49%higher than that of molybdenite.Furthermore,the mechanism of GA was systematically investigated by various surface characterization techniques.Contact angle tests indicated that after GA treatment,the hydrophobicity of the molybdenite surface signifi-cantly decreased,but that of the chalcopyrite surface showed no apparent change.Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy revealed a weak interaction force between GA and chalcopyrite.By contrast,GA was primarily adsorbed onto the molybdenite surface through chemical chelation,with possible contributions from hydrogen bonding and hydrophobic interactions.Pre-adsorbed GA could prevent butyl xanthate from being adsorbed onto molybdenite.Scanning electron microscopy–energy-dispersive spectrometry further indicated that GA was primarily adsorbed onto the“face”of molybdenite rather than the“edge.”Therefore,GA could be a promising molybdenite depressant for the flotation separation of Cu–Mo.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3805400)the National Natural Science Foundation of China(No.22178297,No.22478327)+3 种基金the Science and Technology Innovation Program of Hunan Province(No.2024RC9009)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDC04010100)the Provincial Natural Science Foundation of Hunan(No.2024JJ5371)the Scientific Research Fund of Hunan Provincial Education Department(No.24A0107)。
文摘The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF.
基金Project(52004333)supported by the National Science Foundation of ChinaProject(2021CB1002)supported by Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources,China。
文摘The efficient recovery of fluorite is paid more and more attention with the increasing application especially in strategic emerging industries.In this study,acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer(AAAMPS)was first used as the depressant in fluorite flotation,and its effect on the flotation separation of fluorite and dolomite in sodium oleate(NaOL)system was investigated.The depression mechanism was analyzed by contact angle measurement,zeta potential test,FTIR and XPS analyses.The micro-flotation test results showed that dolomite can be inhibited in fluorite flotation system in the addition of 2 mg/L AA-AMPS and 20 mg/L NaOL at pH 10.The CaF_(2) grade increased from 49.85%in the artificial mixed mineral to 89.60%in the fluorite concentrate.The depression mechanism indicated that AA-AMPS could adsorb strongly on dolomite surface by the chelation with Ca and Mg active sites.Moreover,the further adsorption of NaOL on dolomite surface was prevented by the AA-AMPS adsorption,but that on fluorite surface was little affected,thereby increasing the difference in the hydrophobicity and floatability of the two minerals.