Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This ...Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model(SAM).By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters,a multispectral rock particle segmentation model named CoreSAM is constructed,which achieves rock particle edge extraction and type identification.Building upon this,we propose a comprehensive quantitative evaluation system for rock structure,assessing parameters including particle size,sorting,roundness,particle contact and cementation types.The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs.The proposed method enables full-sample,classified particle size analysis and quantitative characterization of parameters like roundness,advancing reservoir evaluation towards more precise,quantitative,intuitive,and comprehensive development.展开更多
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ...Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.展开更多
The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no ...The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no experience to intuitively interact with RS data of multiple formats is a potential provided by this integration.However,the use of AI and AI agents to help automate RS-related tasks is still in its infancy stage,with some frameworks and interfaces built on top of well-known vision language models(VLM)such as GPT-4,segment anything model(SAM),and grounding DINO.These tools do promise and draw guidelines on the potentials and limitations of existing solutions concerning the use of said models.In this work,the state of the art AI foundation models(FM)are reviewed and used in a multi-modal manner to ingest RS imagery input and perform zero-shot object detection using natural language.The natural language input is then used to define the classes or labels the model should look for,then,both inputs are fed to the pipeline.The pipeline presented in this work makes up for the shortcomings of the general knowledge FMs by stacking pre-processing and post-processing applications on top of the FMs;these applications include tiling to produce uniform patches of the original image for faster detection,outlier rejection of redundant bounding boxes using statistical and machine learning methods.The pipeline was tested with UAV,aerial and satellite images taken over multiple areas.The accuracy for the semantic segmentation showed improvement from the original 64%to approximately 80%-99%by utilizing the pipeline and techniques proposed in this work.GitHub Repository:MohanadDiab/LangRS.展开更多
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord...Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation.展开更多
CO_(2) storage capacity is significantly influenced by the saturation levels of reservoir rocks,with underground fluid saturation typically evaluated using resistivity data.The conductive pathways of fluids in various...CO_(2) storage capacity is significantly influenced by the saturation levels of reservoir rocks,with underground fluid saturation typically evaluated using resistivity data.The conductive pathways of fluids in various states within rock pores differ,alongside variations in conductive mechanisms.To clarify the conductivity of water in rocks across different states,this study employed a three-pore segment saturation model,which corrected for the additional conductivity of clay by categorizing water into large-pore segment,medium-pore segment,and small-pore segment types.Addressing the heterogeneity of tight sandstone reservoirs,we classified distinct pore structures and inverted Archie equation parameters from NMR logging data using a segmented characterization approach,yielding dynamic Archie parameters that vary with depth.Ultimately,we established an improved saturation parameter method based on joint inversion of NMR and resistivity data,which was validated through laboratory experiments and practical downhole applications.The results indicate that this saturation parameter inversion method has been effectively applied in both settings.Furthermore,we discussed the varying conductive behaviors of fluids in large and medium pore segment under saturated and drained states.Lastly,we proposed a workflow for inverting saturation based on downhole data,providing a robust foundation for CO_(2) storage and predicting underground fluid saturation.展开更多
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the soluti...Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.展开更多
According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large def...According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large deformation. Firstly, a segmented mechanical model was established in which free and anchoring section of rock bolt were respectively arranged in different deformation zones. Then, stress and displacement in elastic non-anchoring zone, elastic anchoring zone, elastic sticking zone, softening sticking zone and broken zone were derived respectively based on neural theory and tri-linear strain softening constitutive model of soft rock. Results show that the anchoring effect can be characterized by a supporting parameter b. With its increase, the peak value of tangential stress gradually moves to the roadway wall, and the radial stress significantly increases, which means the decrease of equivalent plastic zone and improvement of confining effect provided by anchorage body. When b increases to 0.72, the equivalent plastic zone disappears, and stresses tend to be the elastic solutions. In addition, the anchoring effect on the displacement of surrounding rock can be quantified by a normalization factor δ.展开更多
Background:The greater trochanter marker is commonly used in 3-dimensional(3D) models;however,its influence on hip and knee kinematics during gait is unclear.Understanding the influence of the greater trochanter marke...Background:The greater trochanter marker is commonly used in 3-dimensional(3D) models;however,its influence on hip and knee kinematics during gait is unclear.Understanding the influence of the greater trochanter marker is important when quantifying frontal and transverse plane hip and knee kinematics,parameters which are particularly relevant to investigate in individuals with conditions such as patellofemoral pain,knee osteoarthritis,anterior cruciate ligament(ACL) injury,and hip pain.The aim of this study was to evaluate the effect of including the greater trochanter in the construction of the thigh segment on hip and knee kinematics during gait.Methods:3D kinematics were collected in 19 healthy subjects during walking using a surface marker system.Hip and knee angles were compared across two thigh segment definitions(with and without greater trochanter) at two time points during stance:peak knee flexion(PKF) and minimum knee flexion(Min KF).Results:Hip and knee angles differed in magnitude and direction in the transverse plane at both time points.In the thigh model with the greater trochanter the hip was more externally rotated than in the thigh model without the greater trochanter(PKF:-9.34°± 5.21° vs.1.40°± 5.22°,Min KF:-5.68°± 4.24° vs.5.01°± 4.86°;p < 0.001).In the thigh model with the greater trochanter,the knee angle was more internally rotated compared to the knee angle calculated using the thigh definition without the greater trochanter(PKF:14.67°± 6.78° vs.4.33°± 4.18°,Min KF:10.54°± 6.71° vs.-0.01°± 2.69°;p < 0.001).Small but significant differences were detected in the sagittal and frontal plane angles at both time points(p < 0.001).Conclusion:Hip and knee kinematics differed across different segment definitions including or excluding the greater trochanter marker,especially in the transverse plane.Therefore when considering whether to include the greater trochanter in the thigh segment model when using a surface markers to calculate 3D kinematics for movement assessment,it is important to have a clear understanding of the effect of different marker sets and segment models in use.展开更多
“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素...“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素在色彩信息和外形特征上差异较小,如何从二维影像中智能精准地识别“精灵圈”像素并对识别的单个像素形成个体“精灵圈”是目前的技术难点。本文提出了一种结合分割万物模型(Segment Anything Model,SAM)视觉分割模型与随机森林机器学习的无人机影像“精灵圈”分割及分类方法,实现了单个“精灵圈”的识别和提取。首先,通过构建索伦森-骰子系数(S?rensen-Dice coefficient,Dice)和交并比(Intersection over Union,IOU)评价指标,从SAM中筛选预训练模型并对其参数进行优化,实现全自动影像分割,得到无属性信息的分割掩码/分割类;然后,利用红、绿、蓝(RGB)三通道信息及空间二维坐标将分割掩码与原图像进行信息匹配,构造分割掩码的特征指标,并根据袋外数据(Out of Bag,OOB)误差减小及特征分布规律对特征进行分析和筛选;最后,利用筛选的特征对随机森林模型进行训练,实现“精灵圈”植被、普通植被和光滩的自动识别与分类。实验结果表明:本文方法“精灵圈”平均正确提取率96.1%,平均错误提取率为9.5%,为精准刻画“精灵圈”时空格局及海岸带无人机遥感图像处理提供了方法和技术支撑。展开更多
AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential ...AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes.展开更多
X-ray Computed Tomography(XCT)enables non-destructive acquisition of the internal structure of materials,and image segmentation plays a crucial role in analyzing material XCT images.This paper proposes an image segmen...X-ray Computed Tomography(XCT)enables non-destructive acquisition of the internal structure of materials,and image segmentation plays a crucial role in analyzing material XCT images.This paper proposes an image segmentation method based on the Segment Anything model(SAM).We constructed a dataset of carbide in nickel-based single crystal superalloys XCT images and preprocessed the images using median filtering,histogram equalization,and gamma correction.Subsequently,SAM was fine-tuned to adapt to the task of material XCT image segmentation,resulting in Material-SAM.We compared the performance of threshold segmentation,SAM,U-Net model,and Material-SAM.Our method achieved 88.45%Class Pixel Accuracy(CPA)and 88.77%Dice Similarity Coefficient(DSC)on the test set,outperforming SAM by 5.25%and 8.81%,respectively,and achieving the highest evaluation.Material-SAM demonstrated lower input requirements compared to SAM,as it only required three reference points for completing the segmentation task,which is one-fifth of the requirement of SAM.Material-SAM exhibited promising results,highlighting its potential as a novel method for material XCT image segmentation.展开更多
In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining...In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 2o% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.展开更多
Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- ch...Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.展开更多
The precooler is a distinctive component of precooled air-breathing engines but constitutes a challenge to conventional thermal design methods.The latter are based upon assumptions that often reveal to be limited for ...The precooler is a distinctive component of precooled air-breathing engines but constitutes a challenge to conventional thermal design methods.The latter are based upon assumptions that often reveal to be limited for precooler design.In this paper,a refined design method considering the variations of fluid thermophysical properties,flow area and thermal parameters distortion,was proposed to remediate their limitations.Firstly,the precooler was discretized into a fixed number of sub-microtubes based on a new discretization criterion.Next,in-house one-dimensional(1D)and two-dimensional(2D)segmented models were established for rapid thermal design and precooler rating with non-uniform airflow,respectively.The heat transfer experimental studies of supercritical hydrocarbon fuel were performed to verify the Jackson correlation for precooler design and the in-house models were validated against the reported data from open literature.On this basis,the proposed method was employed for the design analysis of hydrocarbon fuel precoolers for precooled-Turbine Based Combined Cycle(TBCC)engines.The results show that the local performance of precoolers is intrinsically impacted by the aforementioned three variations.In the case study,the local heat transfer performance is drastically affected by coolant flow transition.While the circumferential temperature distortion of airflow is weakened by heat transfer.With consideration of additional parameter variations,this novel method improves design accuracy and shortens the design time.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
基金Supported by the National Natural Science Foundation of China(42372175,72088101)PetroChina Science and Technology Project of(2023DJ84)Basic Research Cooperation Project between China National Petroleum Corporation and Peking University.
文摘Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model(SAM).By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters,a multispectral rock particle segmentation model named CoreSAM is constructed,which achieves rock particle edge extraction and type identification.Building upon this,we propose a comprehensive quantitative evaluation system for rock structure,assessing parameters including particle size,sorting,roundness,particle contact and cementation types.The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs.The proposed method enables full-sample,classified particle size analysis and quantitative characterization of parameters like roundness,advancing reservoir evaluation towards more precise,quantitative,intuitive,and comprehensive development.
基金supported by Natural Science Foundation Programme of Gansu Province(No.24JRRA231)National Natural Science Foundation of China(No.62061023)Gansu Provincial Science and Technology Plan Key Research and Development Program Project(No.24YFFA024).
文摘Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.
文摘The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no experience to intuitively interact with RS data of multiple formats is a potential provided by this integration.However,the use of AI and AI agents to help automate RS-related tasks is still in its infancy stage,with some frameworks and interfaces built on top of well-known vision language models(VLM)such as GPT-4,segment anything model(SAM),and grounding DINO.These tools do promise and draw guidelines on the potentials and limitations of existing solutions concerning the use of said models.In this work,the state of the art AI foundation models(FM)are reviewed and used in a multi-modal manner to ingest RS imagery input and perform zero-shot object detection using natural language.The natural language input is then used to define the classes or labels the model should look for,then,both inputs are fed to the pipeline.The pipeline presented in this work makes up for the shortcomings of the general knowledge FMs by stacking pre-processing and post-processing applications on top of the FMs;these applications include tiling to produce uniform patches of the original image for faster detection,outlier rejection of redundant bounding boxes using statistical and machine learning methods.The pipeline was tested with UAV,aerial and satellite images taken over multiple areas.The accuracy for the semantic segmentation showed improvement from the original 64%to approximately 80%-99%by utilizing the pipeline and techniques proposed in this work.GitHub Repository:MohanadDiab/LangRS.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F020025Science and Technology Commissioner Program of Huzhou,Grant/Award Number:2023GZ42Sichuan Provincial Science and Technology Support Program,Grant/Award Numbers:2023ZHCG0005,2023ZHCG0008。
文摘Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation.
基金supported in part by the Key National Research Project of China under Grant 2023YFC3707900in part by the National Natural Science Foundation of China under Grant 42204122 and Grant 42072323。
文摘CO_(2) storage capacity is significantly influenced by the saturation levels of reservoir rocks,with underground fluid saturation typically evaluated using resistivity data.The conductive pathways of fluids in various states within rock pores differ,alongside variations in conductive mechanisms.To clarify the conductivity of water in rocks across different states,this study employed a three-pore segment saturation model,which corrected for the additional conductivity of clay by categorizing water into large-pore segment,medium-pore segment,and small-pore segment types.Addressing the heterogeneity of tight sandstone reservoirs,we classified distinct pore structures and inverted Archie equation parameters from NMR logging data using a segmented characterization approach,yielding dynamic Archie parameters that vary with depth.Ultimately,we established an improved saturation parameter method based on joint inversion of NMR and resistivity data,which was validated through laboratory experiments and practical downhole applications.The results indicate that this saturation parameter inversion method has been effectively applied in both settings.Furthermore,we discussed the varying conductive behaviors of fluids in large and medium pore segment under saturated and drained states.Lastly,we proposed a workflow for inverting saturation based on downhole data,providing a robust foundation for CO_(2) storage and predicting underground fluid saturation.
基金This work was supported by the Natural Science Foundation of Henan Province (004030600)
文摘Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.
基金Financial support for this work was provided by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents of China(No.2015RCJJ042)the National Natural Science Foundation of China(Nos.41472280,51274133)+1 种基金the Promotive Research Fund for Excellent Young and Middle-aged Scientisits of Shandong Province of China(No.BS2015SF005)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2013KF05)
文摘According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large deformation. Firstly, a segmented mechanical model was established in which free and anchoring section of rock bolt were respectively arranged in different deformation zones. Then, stress and displacement in elastic non-anchoring zone, elastic anchoring zone, elastic sticking zone, softening sticking zone and broken zone were derived respectively based on neural theory and tri-linear strain softening constitutive model of soft rock. Results show that the anchoring effect can be characterized by a supporting parameter b. With its increase, the peak value of tangential stress gradually moves to the roadway wall, and the radial stress significantly increases, which means the decrease of equivalent plastic zone and improvement of confining effect provided by anchorage body. When b increases to 0.72, the equivalent plastic zone disappears, and stresses tend to be the elastic solutions. In addition, the anchoring effect on the displacement of surrounding rock can be quantified by a normalization factor δ.
基金the National Institute of Child Health and Human Development (No.NICHD,No.R15HD059080,and No.R15HD059080-01A1S1)
文摘Background:The greater trochanter marker is commonly used in 3-dimensional(3D) models;however,its influence on hip and knee kinematics during gait is unclear.Understanding the influence of the greater trochanter marker is important when quantifying frontal and transverse plane hip and knee kinematics,parameters which are particularly relevant to investigate in individuals with conditions such as patellofemoral pain,knee osteoarthritis,anterior cruciate ligament(ACL) injury,and hip pain.The aim of this study was to evaluate the effect of including the greater trochanter in the construction of the thigh segment on hip and knee kinematics during gait.Methods:3D kinematics were collected in 19 healthy subjects during walking using a surface marker system.Hip and knee angles were compared across two thigh segment definitions(with and without greater trochanter) at two time points during stance:peak knee flexion(PKF) and minimum knee flexion(Min KF).Results:Hip and knee angles differed in magnitude and direction in the transverse plane at both time points.In the thigh model with the greater trochanter the hip was more externally rotated than in the thigh model without the greater trochanter(PKF:-9.34°± 5.21° vs.1.40°± 5.22°,Min KF:-5.68°± 4.24° vs.5.01°± 4.86°;p < 0.001).In the thigh model with the greater trochanter,the knee angle was more internally rotated compared to the knee angle calculated using the thigh definition without the greater trochanter(PKF:14.67°± 6.78° vs.4.33°± 4.18°,Min KF:10.54°± 6.71° vs.-0.01°± 2.69°;p < 0.001).Small but significant differences were detected in the sagittal and frontal plane angles at both time points(p < 0.001).Conclusion:Hip and knee kinematics differed across different segment definitions including or excluding the greater trochanter marker,especially in the transverse plane.Therefore when considering whether to include the greater trochanter in the thigh segment model when using a surface markers to calculate 3D kinematics for movement assessment,it is important to have a clear understanding of the effect of different marker sets and segment models in use.
文摘“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素在色彩信息和外形特征上差异较小,如何从二维影像中智能精准地识别“精灵圈”像素并对识别的单个像素形成个体“精灵圈”是目前的技术难点。本文提出了一种结合分割万物模型(Segment Anything Model,SAM)视觉分割模型与随机森林机器学习的无人机影像“精灵圈”分割及分类方法,实现了单个“精灵圈”的识别和提取。首先,通过构建索伦森-骰子系数(S?rensen-Dice coefficient,Dice)和交并比(Intersection over Union,IOU)评价指标,从SAM中筛选预训练模型并对其参数进行优化,实现全自动影像分割,得到无属性信息的分割掩码/分割类;然后,利用红、绿、蓝(RGB)三通道信息及空间二维坐标将分割掩码与原图像进行信息匹配,构造分割掩码的特征指标,并根据袋外数据(Out of Bag,OOB)误差减小及特征分布规律对特征进行分析和筛选;最后,利用筛选的特征对随机森林模型进行训练,实现“精灵圈”植被、普通植被和光滩的自动识别与分类。实验结果表明:本文方法“精灵圈”平均正确提取率96.1%,平均错误提取率为9.5%,为精准刻画“精灵圈”时空格局及海岸带无人机遥感图像处理提供了方法和技术支撑。
基金Supported by Shenzhen Science and Technology Program(No.JCYJ20220530153604010).
文摘AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes.
基金This work was supported by the National Natural Science Foundation of China(Grant Number 52073030)National Natural Science Foundation of China-Guangxi Joint Fund(U20A20276).
文摘X-ray Computed Tomography(XCT)enables non-destructive acquisition of the internal structure of materials,and image segmentation plays a crucial role in analyzing material XCT images.This paper proposes an image segmentation method based on the Segment Anything model(SAM).We constructed a dataset of carbide in nickel-based single crystal superalloys XCT images and preprocessed the images using median filtering,histogram equalization,and gamma correction.Subsequently,SAM was fine-tuned to adapt to the task of material XCT image segmentation,resulting in Material-SAM.We compared the performance of threshold segmentation,SAM,U-Net model,and Material-SAM.Our method achieved 88.45%Class Pixel Accuracy(CPA)and 88.77%Dice Similarity Coefficient(DSC)on the test set,outperforming SAM by 5.25%and 8.81%,respectively,and achieving the highest evaluation.Material-SAM demonstrated lower input requirements compared to SAM,as it only required three reference points for completing the segmentation task,which is one-fifth of the requirement of SAM.Material-SAM exhibited promising results,highlighting its potential as a novel method for material XCT image segmentation.
基金the Korea Forest Service for funding this research(Project No.S211316L020130)
文摘In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 2o% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.
基金financially supported by the Scientific and Technological Research Council of Turkey(Project No:109 O 714)
文摘Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.
基金co-supported by the Specialized Research Foundation of Civil Aircraft,China(MJ-2016-D-35)the Advanced Jet Propulsion Creativity Center,AEAC,China(HKCX2019-01-004)。
文摘The precooler is a distinctive component of precooled air-breathing engines but constitutes a challenge to conventional thermal design methods.The latter are based upon assumptions that often reveal to be limited for precooler design.In this paper,a refined design method considering the variations of fluid thermophysical properties,flow area and thermal parameters distortion,was proposed to remediate their limitations.Firstly,the precooler was discretized into a fixed number of sub-microtubes based on a new discretization criterion.Next,in-house one-dimensional(1D)and two-dimensional(2D)segmented models were established for rapid thermal design and precooler rating with non-uniform airflow,respectively.The heat transfer experimental studies of supercritical hydrocarbon fuel were performed to verify the Jackson correlation for precooler design and the in-house models were validated against the reported data from open literature.On this basis,the proposed method was employed for the design analysis of hydrocarbon fuel precoolers for precooled-Turbine Based Combined Cycle(TBCC)engines.The results show that the local performance of precoolers is intrinsically impacted by the aforementioned three variations.In the case study,the local heat transfer performance is drastically affected by coolant flow transition.While the circumferential temperature distortion of airflow is weakened by heat transfer.With consideration of additional parameter variations,this novel method improves design accuracy and shortens the design time.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.