We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular ma...We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular matrix.These are a kind of spatiotemporal symmetric solutions,e.g.spiral waves.We give the averaging method for the existence of affine periodic solutions in two situations:one in which the initial values of the affine periodic solutions of the unperturbed system form a manifold,and another that does not rely on the structure of the initial values of the unperturbed system's affine periodic solutions.The transversal condition is determined using the Brouwer degree.We also present a higher order averaging method for general degenerate systems by means of the Brouwer degree and a Lyapunov-Schmidt reduction.展开更多
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is deriv...In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.展开更多
The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction di...The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.展开更多
In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transp...In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.展开更多
The paper studies the parametric stochastic roll motion in the random waves.The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed....The paper studies the parametric stochastic roll motion in the random waves.The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed.Random sea surface is treated as a narrow-band stochastic process,and the stochastic parametric excitation is studied based on the effective wave theory.The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function.By using the stochastic averaging method,the differential equation of motion is transformed into Ito’s stochastic differential equation.The steady-state probability density function of roll motion is obtained,and the results are validated with the numerical simulation and model test.展开更多
This paper puts forward a complex inner product averaging method for calculating normal form of ODE. Compared with conventional averaging method, the theoretic analytical process has such simple forms as to realize co...This paper puts forward a complex inner product averaging method for calculating normal form of ODE. Compared with conventional averaging method, the theoretic analytical process has such simple forms as to realize computer program easily. Results can be applied in both autonomous and non-autonomous systems. At last, an example is resolved to verify the method.展开更多
In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa...In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.展开更多
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation...The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.展开更多
Considering the rainfall’s importance in hydrological modeling, the objective of this study was the performance comparison, in convergence terms, of techniques often used to estimate the average rainfall over an area...Considering the rainfall’s importance in hydrological modeling, the objective of this study was the performance comparison, in convergence terms, of techniques often used to estimate the average rainfall over an area: Thiessen Polygon (TP) Method;Reciprocal Distance Squared (RDS) Method;Kriging Method (KM) and Multiquadric Equations (ME) Method. The comparison was done indirectly, using GORE and BALANCE index to assess the convergence results from each method by increasing the rain gauges density in a region, through six scenarios. The Coremas/Mae D’água Watershed employed as study area, with an area of 8385 km2, is situated on Brazilian semi-arid. The results showed the TP, as RDS and ME techniques to be employed successfully to obtain the average rainfall over an area, highlighting the MEM. On the other hand, KM, using two variograms models, had an unstable behavior, pointing the prior study of data and variogram’s choice as a need to practical applying.展开更多
The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elasti...The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology...In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology description functions(RMDF),the randomness of the material properties of the constituents as well as the correlation among these random properties are fully characterized through the topologies of the constituents.Then,by virtue of multiscale asymptotic analysis,the random effective quantities such as stiffness parameters and strength parameters along with their numerical computation formulae are derived by a SSOTS strategy combined with the Monte-Carlo method.Finally,the SSOTS method developed in this paper shows an excellent computational accuracy,and therefore present an important advance towards computationally efficient multiscale modeling frameworks considering microstructure uncertainties.展开更多
The Stirling engine,as a closed-cycle power machine,exhibits excellent emission characteristics and broad energy adaptability.Second-order analysis methods are extensively used during the foundational design and therm...The Stirling engine,as a closed-cycle power machine,exhibits excellent emission characteristics and broad energy adaptability.Second-order analysis methods are extensively used during the foundational design and thermodynamic examination of Stirling engines,owing to their commendable model precision and remarkable efficiency.To scrutinize the effect of Stirling engine design parameters on the cyclical work output and efficiency,this study formulates a series of differential equations for the Stirling cycle by employing second-order analysis methods,subsequently augmenting the predictive accuracy by integrating considerations of loss mechanisms.In addition,an iterative method for the convergence of the average pressure was introduced.The predictive capability of the established model was validated using GPU-3 and RE-1000 experimental data.According to the model,parameters such as the operational fluid,porosity of the regenerator,and diameter of the wire mesh and their influence on the resulting work output and cyclic efficiency of the Stirling engine were analyzed,thereby facilitating a broader understanding of the engine's functional characteristics.These findings suggest that hydrogen,owing to its lower dynamic viscosity coefficient,can provide superior output power.The loss due to flow resistance tends to increase with the rotational speed.Additionally,under conditions of elevated rotational speed,the loss from flow resistance declines in cases of increased porosity,and the enhancement of the porosity to diminish flow resistance losses can boost both the output work and the cyclic efficiency of the engine.As the porosity increased further,the hydraulic diameter and dead volume in the regenerator continued to expand,causing the pressure drop within the engine to become the dominant factor in the gradual reduction of output power.Furthermore,extending the length of the regenerator results in a decrease in the output work,although the thermal cycle efficiency initially increases before eventually decreasing.Based on these insights,this study pursues the optimal designs for Stirling engines.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical ...The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.展开更多
Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that ...Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that the capability to capture dynamic loading was not explored. It was found that there were different quadrature equations to predict the next step displacement increment. A modified quadrature equation of this method was derived so that the equation to determine the next step displacement was numerically equivalent to the equation used in the constant AAM. It was verified that the original form of this method, in general, had a better capability to capture dynamic loadings than the constant AAM. This excellent property, in addition to computational efficiency, will help to make this method competitive with general secondorder accurate integration methods.展开更多
The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appro...The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appropriately represents the non-equilibrium region near the interface, is prescribed rather than the no-slip condition and the linear Navier slip condition. To impose different temperature gradients, the outer wall is subjected to q2, the inner wall is subjected to q1, and q1 〉 q2. A modified two-component four-equation non-homogeneous equilibrium model is employed for the nanofiuid, which have been reduced to two-point ordinary boundary value differential equations in the consideration of the thermally and hydrodynamically fully developed flow. The homotopy analysis method (HAM) is employed to solve the equations, and the h-curves are plotted to verify the accuracy and efficiency of the solutions. Moreover, the effects of the physical factors on the flow and heat transfer are discussed in detail, and the semi-analytical relation between NUB and NBT is obtained.展开更多
Neutrons have been extensively used in many fields,such as nuclear physics,biology,geology,medical science,and national defense,owing to their unique penetration characteristics.Gamma rays are usually accompanied by t...Neutrons have been extensively used in many fields,such as nuclear physics,biology,geology,medical science,and national defense,owing to their unique penetration characteristics.Gamma rays are usually accompanied by the detection of neutrons.The capability to discriminate neutrons from gamma rays is important for evaluating plastic scintillator neutron detectors because similar pulse shapes are generated from both forms of radiation in the detection system.The pulse signals measured by plastic scintillators contain noise,which decreases the accuracy of n-y discrimination.To improve the performance of n-y discrimination,the noise of the pulse signals should be filtered before the n-y discrimination process.In this study,the influences of the Fourier transform,wavelet transform,moving-average filter,and Kalman algorithm on the charge comparison method,fractal spectrum method,and back-propagation neural network methods were studied.It was found that the Fourier transform filtering algorithm exhibits better adaptability to the charge comparison method than others,with an increasing accuracy of 6.87%compared to that without the filtering process.Meanwhile,the Kalman filter offers an improvement of 3.04%over the fractal spectrum method,and the adaptability of the moving-average filter in backpropagation neural network discrimination is better than that in other methods,with an increase in 8.48%.The Kalman filtering algorithm has a significant impact on the peak value of the pulse,reaching 4.49%,and it has an insignificant impact on the energy resolution of the spectrum measurement after discrimination.展开更多
A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The average...A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The averaged stochastic differential equa-tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less thanthat of the original system. The stationary probability density and statistics of the original system are obtained approximately fromsolving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It isshown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of originalsystem agree well, and the computational time for the former results is less than that for the latter ones.展开更多
基金supported by the National Natural Science Foundation of China(1237119112071175)+4 种基金supported by the NSFC(1207117511901080)supported by the NSFC(12071175)the Fundamental Research Funds For the Central Universities(2412023YQ003)the Natural Science Foundation of Jilin Province(20200201253JC)。
文摘We consider the persistence of affine periodic solutions for perturbed affine periodic systems.Such(Q,T)-affine periodic solutions have the form x(t+T)=Qx(t)for all t∈R,where T>0 is fixed and Q is a nonsingular matrix.These are a kind of spatiotemporal symmetric solutions,e.g.spiral waves.We give the averaging method for the existence of affine periodic solutions in two situations:one in which the initial values of the affine periodic solutions of the unperturbed system form a manifold,and another that does not rely on the structure of the initial values of the unperturbed system's affine periodic solutions.The transversal condition is determined using the Brouwer degree.We also present a higher order averaging method for general degenerate systems by means of the Brouwer degree and a Lyapunov-Schmidt reduction.
基金Project supported by the National Natural Science Foundation of China(Nos.11971303 and 11871330)。
文摘In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of HighPerformance Computing of China
文摘The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
基金supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Project No.CityU 102204).
文摘In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.
基金the State Administration of Science,Technology and Industry for National Defense of China(Grant No.B2420132001).
文摘The paper studies the parametric stochastic roll motion in the random waves.The differential equation of the ship parametric roll under random wave is established with considering the nonlinear damping and ship speed.Random sea surface is treated as a narrow-band stochastic process,and the stochastic parametric excitation is studied based on the effective wave theory.The nonlinear restored arm function obtained from the numerical simulation is expressed as the approximate analytic function.By using the stochastic averaging method,the differential equation of motion is transformed into Ito’s stochastic differential equation.The steady-state probability density function of roll motion is obtained,and the results are validated with the numerical simulation and model test.
文摘This paper puts forward a complex inner product averaging method for calculating normal form of ODE. Compared with conventional averaging method, the theoretic analytical process has such simple forms as to realize computer program easily. Results can be applied in both autonomous and non-autonomous systems. At last, an example is resolved to verify the method.
文摘In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.
文摘The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.
文摘Considering the rainfall’s importance in hydrological modeling, the objective of this study was the performance comparison, in convergence terms, of techniques often used to estimate the average rainfall over an area: Thiessen Polygon (TP) Method;Reciprocal Distance Squared (RDS) Method;Kriging Method (KM) and Multiquadric Equations (ME) Method. The comparison was done indirectly, using GORE and BALANCE index to assess the convergence results from each method by increasing the rain gauges density in a region, through six scenarios. The Coremas/Mae D’água Watershed employed as study area, with an area of 8385 km2, is situated on Brazilian semi-arid. The results showed the TP, as RDS and ME techniques to be employed successfully to obtain the average rainfall over an area, highlighting the MEM. On the other hand, KM, using two variograms models, had an unstable behavior, pointing the prior study of data and variogram’s choice as a need to practical applying.
基金Project supported by the National Natural Science Foundation of China(No.11471262)
文摘The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
基金partially supported by China Postdoctoral Science Foundation(2018M643573)National Natural Science Foundation of Shaanxi Province(2019JQ-048)+2 种基金National Natural Science Foundation of China(51739007,61971328,11301392 and 11961009)of ChinaShanghai Peak Discipline Program for Higher Education Institutions(ClassⅠ)–Civil EngineeringFundamental Research Funds for the Central Universities(No.22120180529)。
文摘In this paper,a stochastic second-order two-scale(SSOTS)method is proposed for predicting the non-deterministic mechanical properties of composites with random interpenetrating phase.Firstly,based on random morphology description functions(RMDF),the randomness of the material properties of the constituents as well as the correlation among these random properties are fully characterized through the topologies of the constituents.Then,by virtue of multiscale asymptotic analysis,the random effective quantities such as stiffness parameters and strength parameters along with their numerical computation formulae are derived by a SSOTS strategy combined with the Monte-Carlo method.Finally,the SSOTS method developed in this paper shows an excellent computational accuracy,and therefore present an important advance towards computationally efficient multiscale modeling frameworks considering microstructure uncertainties.
基金supported by Sichuan Science and Technology Program(No.24NSFSC4579)National Natural Science Foundation of China(No.12305193)+2 种基金Sichuan Science and Technology Program(No.23NSFSC6149)National Natural Science Foundation of China(No.12305194)Technology on Reactor System Design Technology Laboratory Stable support Funding(No.2023_JCJQ_LB_003).
文摘The Stirling engine,as a closed-cycle power machine,exhibits excellent emission characteristics and broad energy adaptability.Second-order analysis methods are extensively used during the foundational design and thermodynamic examination of Stirling engines,owing to their commendable model precision and remarkable efficiency.To scrutinize the effect of Stirling engine design parameters on the cyclical work output and efficiency,this study formulates a series of differential equations for the Stirling cycle by employing second-order analysis methods,subsequently augmenting the predictive accuracy by integrating considerations of loss mechanisms.In addition,an iterative method for the convergence of the average pressure was introduced.The predictive capability of the established model was validated using GPU-3 and RE-1000 experimental data.According to the model,parameters such as the operational fluid,porosity of the regenerator,and diameter of the wire mesh and their influence on the resulting work output and cyclic efficiency of the Stirling engine were analyzed,thereby facilitating a broader understanding of the engine's functional characteristics.These findings suggest that hydrogen,owing to its lower dynamic viscosity coefficient,can provide superior output power.The loss due to flow resistance tends to increase with the rotational speed.Additionally,under conditions of elevated rotational speed,the loss from flow resistance declines in cases of increased porosity,and the enhancement of the porosity to diminish flow resistance losses can boost both the output work and the cyclic efficiency of the engine.As the porosity increased further,the hydraulic diameter and dead volume in the regenerator continued to expand,causing the pressure drop within the engine to become the dominant factor in the gradual reduction of output power.Furthermore,extending the length of the regenerator results in a decrease in the output work,although the thermal cycle efficiency initially increases before eventually decreasing.Based on these insights,this study pursues the optimal designs for Stirling engines.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
基金National Natural Science Foundation of ChinaUnder Grant No. 50578047, 50338020 China Ministry ofEducation (Program for New Century Excellent Talents inUniversity) China Ministry of Science and Technology UnderGrant No.2003AA602150
文摘The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.
基金Science Council (NSC),Chinese Taipei Under Grant No.NSC-96-2221-E-027-030
文摘Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that the capability to capture dynamic loading was not explored. It was found that there were different quadrature equations to predict the next step displacement increment. A modified quadrature equation of this method was derived so that the equation to determine the next step displacement was numerically equivalent to the equation used in the constant AAM. It was verified that the original form of this method, in general, had a better capability to capture dynamic loadings than the constant AAM. This excellent property, in addition to computational efficiency, will help to make this method competitive with general secondorder accurate integration methods.
基金Project supported by the National Natural Science Foundation of China(Nos.51476191 and51406008)
文摘The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appropriately represents the non-equilibrium region near the interface, is prescribed rather than the no-slip condition and the linear Navier slip condition. To impose different temperature gradients, the outer wall is subjected to q2, the inner wall is subjected to q1, and q1 〉 q2. A modified two-component four-equation non-homogeneous equilibrium model is employed for the nanofiuid, which have been reduced to two-point ordinary boundary value differential equations in the consideration of the thermally and hydrodynamically fully developed flow. The homotopy analysis method (HAM) is employed to solve the equations, and the h-curves are plotted to verify the accuracy and efficiency of the solutions. Moreover, the effects of the physical factors on the flow and heat transfer are discussed in detail, and the semi-analytical relation between NUB and NBT is obtained.
基金supported by the Key Natural Science Projects of the Sichuan Education Department(No.18ZA0067)the Key Science and Technology Projects of Leshan(No.19SZD117)。
文摘Neutrons have been extensively used in many fields,such as nuclear physics,biology,geology,medical science,and national defense,owing to their unique penetration characteristics.Gamma rays are usually accompanied by the detection of neutrons.The capability to discriminate neutrons from gamma rays is important for evaluating plastic scintillator neutron detectors because similar pulse shapes are generated from both forms of radiation in the detection system.The pulse signals measured by plastic scintillators contain noise,which decreases the accuracy of n-y discrimination.To improve the performance of n-y discrimination,the noise of the pulse signals should be filtered before the n-y discrimination process.In this study,the influences of the Fourier transform,wavelet transform,moving-average filter,and Kalman algorithm on the charge comparison method,fractal spectrum method,and back-propagation neural network methods were studied.It was found that the Fourier transform filtering algorithm exhibits better adaptability to the charge comparison method than others,with an increasing accuracy of 6.87%compared to that without the filtering process.Meanwhile,the Kalman filter offers an improvement of 3.04%over the fractal spectrum method,and the adaptability of the moving-average filter in backpropagation neural network discrimination is better than that in other methods,with an increase in 8.48%.The Kalman filtering algorithm has a significant impact on the peak value of the pulse,reaching 4.49%,and it has an insignificant impact on the energy resolution of the spectrum measurement after discrimination.
基金supported by the National Natural Science Foundation of China(Nos.11172259,11272279,11321202,and 11432012)
文摘A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The averaged stochastic differential equa-tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less thanthat of the original system. The stationary probability density and statistics of the original system are obtained approximately fromsolving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It isshown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of originalsystem agree well, and the computational time for the former results is less than that for the latter ones.