In recent years,the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics.We demonstrate that twisted bilayer graphene with sma...In recent years,the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics.We demonstrate that twisted bilayer graphene with small twist angles behaves as a second-order topological insulator possessing topological corner charges.Using a tight-binding model,we compute the topological band indices and corner states of finite-sized twisted bilayer graphene flakes.It is found that for any small twist angle,whether commensurate or incommensurate,the gaps both below and above the flat bands are associated with nontrivial topological indices.Our results not only extend the concept of second-order band topology to arbitrary small twist angles but also confirm the existence of corner states at acute-angle corners.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Usin...In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Using the perturbation method,we analyze the first-and second-order sideband generations in the output field from the system under the actions of a strong control field and a weak probe field.Numerical simulations show that the Kerr nonlinearity can lead to the occurrence of the asymmetric line shape in the transmission of the probe field.Comparing with traditional scheme for generating the second-order sideband,our spectral shape of the second-order sideband is amplified and becomes asymmetric,which has potential applications in precision measurement,high-sensitivity devices,and frequency conversion.展开更多
Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both t...Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.展开更多
We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the ...We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.展开更多
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress...To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.展开更多
In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.T...In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.展开更多
In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order ...In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.展开更多
In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the origi...In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.展开更多
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more...The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.展开更多
The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool...The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted.展开更多
BACKGROUND The accuracy of blind intra-articular injections in the shoulder is rather low.Inaccurate injections tend to lead to poorer treatment outcomes.The“Delaware posterior bone touch technique”has shown higher ...BACKGROUND The accuracy of blind intra-articular injections in the shoulder is rather low.Inaccurate injections tend to lead to poorer treatment outcomes.The“Delaware posterior bone touch technique”has shown higher accuracy in young,slender,healthy volunteers than the classical“Cyriax technique”.AIM To investigate whether the Delaware technique would also be more accurate in older patients with capsulitis.METHODS We analyzed the files of 100 consecutive patients with capsulitis who were treated with an intra-articular injection containing a mixture of triamcinolone,lidocaine,and air.After the injection,the shoulder was moved to determine whether a squishing sound could be produced.The squishing sound was interpreted as an accurate injection.The scores with the new Delaware technique were compared against those with the Cyriax technique in a previous study.RESULTS Squishing was heard after 87%of the injections.This was 13%(10%points)more than the 77%in the previous study(P=0.004).CONCLUSION The Delaware technique was significantly more accurate than the Cyriax technique also in middle aged patients with capsulitis.We hypothesize that the difference is caused by a lower risk that a part of the opening of the needle is still outside the capsule.展开更多
The travel-time corrections for the primary seismic phases of 72 stations in the Guangdong seismic network,relative to the 1D South China travel-time model,were determined using joint hypocentral determination(JHD)and...The travel-time corrections for the primary seismic phases of 72 stations in the Guangdong seismic network,relative to the 1D South China travel-time model,were determined using joint hypocentral determination(JHD)and statistical analysis methods.The travel-time corrections for the Pg phase of 72 stations range between-0.25 s and 0.14 s,while the corrections for the Sg phase range between 0.27 s and 0.35 s,and those for the Pn phase are between-0.86 s and 0.07 s.The spatial distribution of travel-time corrections for Pg,Sg,and Pn phases of 72 stations correlates well with the geological structure in this region.This indicates that the travel-time corrections for Pg and Sg phases are mainly caused by the discrepancy between the actual crustal velocity structure beneath the stations and the 1D South China travel-time model.These corrections empirically compensate for systematic travel-time errors arising from such discrepancies.The primary factor contributing to the travel-time corrections for the Pn phase is the Moho undulations or tilt.These corrections are intended to compensate for systematic errors in travel time caused by variations in the actual Moho.By integrating the obtained travel-time corrections into the HYPO-SAT location algorithm,test results showed an obvious improvement in location accuracy and origin time precision for explosion events.The variation of horizontal distance between repeating earthquake pairs has also improved,with 86%of the repeating earthquake pair spacing being more accurately estimated after correction.This suggests the crucial significance of travel-time correction in earthquake location,and the consideration of travel-time correction exerts a notable impact on enhancing earthquake location accuracy.展开更多
Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between Octob...Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans.展开更多
Objective:To explore nursing measures for elderly patients with chronic obstructive pulmonary disease(COPD)and analyze the effect of continuous nursing pathways on improving the accuracy of aerosol use.Methods:From Ap...Objective:To explore nursing measures for elderly patients with chronic obstructive pulmonary disease(COPD)and analyze the effect of continuous nursing pathways on improving the accuracy of aerosol use.Methods:From April 2023 to April 2024,76 elderly COPD patients admitted to our hospital were randomly selected for nursing research.They were divided into two groups using a computer double-blind method,with 38 patients in each group.The control group received routine nursing,while the observation group applied the continuous nursing pathway.The nursing effects of the two groups were investigated and compared,including(1)aerosol accuracy;(2)cardiopulmonary function;(3)subjective well-being and self-care ability;(4)quality of life;and(5)nursing satisfaction.Results:Compared with the control group,the observation group had a significantly higher accuracy rate of aerosol use(P<0.05).Before nursing,there were no significant differences in cardiopulmonary function indicators,MUNSH scores,and ESCA scores between the two groups(P>0.05).After nursing,the patient's cardiopulmonary function improved significantly,and their subjective well-being and self-care ability increased.The observation group was significantly better than the control group in all the above indicators(P<0.05).The quality of life scores of the observation group were significantly higher than those of the control group(P<0.05).Conclusion:In the nursing of elderly patients with chronic obstructive pulmonary disease,the application of the continuous nursing pathway can effectively improve the accuracy of aerosol use and improve patients'cardiopulmonary function.展开更多
This brief presents a cryogenic voltage reference circuit designed to operate effectively across a wide temperature range from 30 to 300 K.A key feature of the proposed design is utilizing a current subtraction techni...This brief presents a cryogenic voltage reference circuit designed to operate effectively across a wide temperature range from 30 to 300 K.A key feature of the proposed design is utilizing a current subtraction technique for temperature compensation of the reference current,avoiding the deployment of bipolar transistors to reduce area and power consumption.Implemented with a 0.18-μm CMOS process,the circuit achieves a temperature coefficient(TC)of 67.5 ppm/K,which was not achieved in previous works.The design can also attain a power supply rejection(PSR)of 58 d B at 10 k Hz.Meanwhile,the average reference voltage is 1.2 V within a 1.6%3σ-accuracy spread.Additionally,the design is characterized by a minimal power dissipation of 1μW at 30 K and a compact chip area of 0.0035 mm~2.展开更多
Changes in lake levels, as an indicator of climate change, are crucial for understanding water resources.Satellite altimetry has proven to be an effective technique for monitoring water level changes in inland lakes. ...Changes in lake levels, as an indicator of climate change, are crucial for understanding water resources.Satellite altimetry has proven to be an effective technique for monitoring water level changes in inland lakes. However, high-altitude and high-latitude lakes undergo seasonal freezing and melting, affecting satellite altimetry accuracy. This paper evaluates the accuracy of lake level height observations by the CryoSat-2, which uses synthetic aperture radar(SAR) across seasons. First, we used lake boundary based on optical remote sensing data to extract the footprints of CryoSat-2 that fall on Namco and Zhari Namco.After elevation conversion and anomaly identification, we obtained the time series of lake levels. These data were compared and verified against lake levels from in-situ measurements to assess the accuracy of CryoSat-2. The results show that CryoSat-2 can monitor lake level height with an accuracy of about 10-13 cm. The correlation coefficient between CryoSat-2 observations and in-situ measurements over Namco is 0.80(p < 0.01), with a Root Mean Square Error(RMSE) of 13 cm. For Zhari Namco, the correlation coefficient is 0.91, with an RMSE of 10 cm, indicating a better match. At the seasonal scale, the seasonal correlation coefficients between CryoSat-2 and in-situ measurement in Namco are 0.47(spring),0.79(summer), and 0.91(fall) with no observations available for winter. The lower correlation in spring may be due to incomplete ice melting. For Zhari Namco, the seasonal correlation coefficients are 0.89(spring), 0.93(summer), 0.89(fall), and 0.87(winter). The results show that CryoSat-2 accuracy is higher in summer and fall, while slightly lower in spring and winter, indicating that ice formation affects accuracy. Even during winter, the altimetry results do not significantly exceed the in-situ lake water level observations.展开更多
Position-sensitive detector(PSD)is widely used in precision measurement fields such as flatness detection,auto-collimator systems,and degrees of freedom testing.However,due to factors such as uneven surface resistance...Position-sensitive detector(PSD)is widely used in precision measurement fields such as flatness detection,auto-collimator systems,and degrees of freedom testing.However,due to factors such as uneven surface resistance and differences in electrode structures,the nonlinearity of PSD becomes increasingly severe as the photosensitive surface moves from the center toward the edges of the four electrodes.To address this issue,a PSD nonlinearity correction algorithm is proposed.The algorithm utilizes the particle swarm optimization(PSO)algorithm to determine the optimal weights and thresholds,providing better initial parameters for the back propagation(BP)neural network.The BP neural network then iterates continuously until the error conditions are met,completing the correction process.Furthermore,a PSD nonlinearity correction system was developed,and the influence of different spot sizes on PSD positioning accuracy was simulated based on the current equation under the Gaussian spot model.This validated the robustness of the correction algorithm under varying spot sizes.The results demonstrate that the overall optimized error is reduced by 84.51%,and for spot sizes smaller than 1 mm,the error reduction exceeds 93.89%.This method not only meets the measurement accuracy requirements but also extends the measurement range of PSD.展开更多
This review comprehensively analyzes advancements in artificial intelligence,particularly machine learning and deep learning,in medical imaging,focusing on their transformative role in enhancing diagnostic accuracy.Ou...This review comprehensively analyzes advancements in artificial intelligence,particularly machine learning and deep learning,in medical imaging,focusing on their transformative role in enhancing diagnostic accuracy.Our in-depth analysis of 138 selected studies reveals that artificial intelligence(AI)algorithms frequently achieve diagnostic performance comparable to,and often surpassing,that of human experts,excelling in complex pattern recognition.Key findings include earlier detection of conditions like skin cancer and diabetic retinopathy,alongside radiologist-level performance for pneumonia detection on chest X-rays.These technologies profoundly transform imaging by significantly improving processes in classification,segmentation,and sequential analysis across diversemodalities such as X-rays,Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and ultrasound.Specific advancements with Convolutional Neural Networks,Recurrent Neural Networks,and ensemble learning techniques have facilitated more precise diagnosis,prediction,and therapy planning.Notably,Generative Adversarial Networks address limited data through augmentation,while transfer learning efficiently adapts models for scarce labeled datasets,and Reinforcement Learning shows promise in optimizing treatment protocols,collectively advancing patient care.Methodologically,a systematic review(2015-2024)used Scopus and Web of Science databases,yielding 7982 initial records.Of these,1189 underwent bibliometric analysis using the R package‘Bibliometrix’,and 138 were comprehensively reviewed for specific findings.Research output surged over the decade,led by Institute of Electrical and Electronics Engineers(IEEE)Access(19.1%).China dominates publication volume(36.1%),while the United States of America(USA)leads total citations(5605),and Hong Kong exhibits the highest average(55.60).Challenges include rigorous validation,regulatory clarity,and fostering clinician trust.This study highlights significant emerging trends and crucial future research directions for successful AI implementation in healthcare.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12104232 and 12074156).
文摘In recent years,the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics.We demonstrate that twisted bilayer graphene with small twist angles behaves as a second-order topological insulator possessing topological corner charges.Using a tight-binding model,we compute the topological band indices and corner states of finite-sized twisted bilayer graphene flakes.It is found that for any small twist angle,whether commensurate or incommensurate,the gaps both below and above the flat bands are associated with nontrivial topological indices.Our results not only extend the concept of second-order band topology to arbitrary small twist angles but also confirm the existence of corner states at acute-angle corners.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174344 and 12175199)Foundation of Department of Science and Technology of Zhejiang Province(Grant No.2022R52047)。
文摘In this paper,we investigate the phenomena of electromagnetically induced transparency and the generation of second-order sideband in a Laguerre–Gaussian cavity optorotational system with a Kerr nonlinear medium.Using the perturbation method,we analyze the first-and second-order sideband generations in the output field from the system under the actions of a strong control field and a weak probe field.Numerical simulations show that the Kerr nonlinearity can lead to the occurrence of the asymmetric line shape in the transmission of the probe field.Comparing with traditional scheme for generating the second-order sideband,our spectral shape of the second-order sideband is amplified and becomes asymmetric,which has potential applications in precision measurement,high-sensitivity devices,and frequency conversion.
基金This work was supported by the National Natural Science Foundation of China(No.U2230203)the Fundamental Research Funds for the Central Universities.
文摘Polarization-dependent second harmonic generation is a widely utilized technique for characterizing symmetry.However,in collinear reflective geometry,the essential beam-splitting device significantly influences both the polarization state of the fundamental and harmonic beams,thereby affecting the accuracy of the obtained second-order nonlinear susceptibility.Here,we propose a data correction method to solve this problem to obtain accurate secondorder nonlinear susceptibility.The feasibility and generality of the method are demonstrated through theoretical and experimental validation.
基金Supported by the Key Scientific Research Plan of Colleges and Universities in Henan Province(23B140006)the National Natural Science Foundation of China(11965017)。
文摘We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.
基金The National Key Research and Development Program of China under contract No.2023YFC3107701the National Natural Science Foundation of China under contract No.42375143.
文摘To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future.
基金supported by the National Key Research and Development Program of China under Grant 2023YFB2407400。
文摘In the cascaded H-bridge inverter(CHBI)with supercapacitor and dc-dc stage,inherent second-order harmonic power flows through each submodule(SM),causing fluctuations in both the dc-link voltage and the dc-dc current.There exist limitations in handling these fluctuations at variable output frequencies when employing proportional-integral(PI)control to the dc-dc stage.This paper aims to coordinately control these second-order harmonic voltage and current fluctuations in the CHBI.The presented method configures a specific second-order harmonic voltage reference,equipped with a maximum voltage fluctuation constraint and a suitable phase,for the dc-dc stage.A PI-resonant controller is used to track the configured reference.This allows for regulating the second-order harmonic fluctuation in the average dc-link voltage among the SMs within a certain value.Importantly,the second-order harmonic fluctuation in the dc-dc current can also be reduced.Simulation and experimental results demonstrate the effectiveness of the presented method.
文摘In this article we consider the asymptotic behavior of extreme distribution with the extreme value index γ>0 . The rates of uniform convergence for Fréchet distribution are constructed under the second-order regular variation condition.
文摘In this paper, combining the idea of difference method and finite element method, we construct a difference scheme for a self-adjoint problem in conservation form. Its solution uniformly converges to that of the original differential equation problem with order h3.
基金National Natural Science Foundation of China(12102410)Fund of National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2022212005)。
文摘The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.
基金Supported by the National Natural Science Foundation of China(Grant Nos.52375448,52275440).
文摘The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted.
文摘BACKGROUND The accuracy of blind intra-articular injections in the shoulder is rather low.Inaccurate injections tend to lead to poorer treatment outcomes.The“Delaware posterior bone touch technique”has shown higher accuracy in young,slender,healthy volunteers than the classical“Cyriax technique”.AIM To investigate whether the Delaware technique would also be more accurate in older patients with capsulitis.METHODS We analyzed the files of 100 consecutive patients with capsulitis who were treated with an intra-articular injection containing a mixture of triamcinolone,lidocaine,and air.After the injection,the shoulder was moved to determine whether a squishing sound could be produced.The squishing sound was interpreted as an accurate injection.The scores with the new Delaware technique were compared against those with the Cyriax technique in a previous study.RESULTS Squishing was heard after 87%of the injections.This was 13%(10%points)more than the 77%in the previous study(P=0.004).CONCLUSION The Delaware technique was significantly more accurate than the Cyriax technique also in middle aged patients with capsulitis.We hypothesize that the difference is caused by a lower risk that a part of the opening of the needle is still outside the capsule.
基金supported by the National Key Research and Development Program of China(2023YFC3008605)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021002)the Seismological Research Foundation for Youths of Guangdong Earthquake Agency(Open Funding Project of Key Laboratory of Earthquake Monitoring and Disaster Mitigation Technology,China Earthquake Administration)(GDDZY202309)。
文摘The travel-time corrections for the primary seismic phases of 72 stations in the Guangdong seismic network,relative to the 1D South China travel-time model,were determined using joint hypocentral determination(JHD)and statistical analysis methods.The travel-time corrections for the Pg phase of 72 stations range between-0.25 s and 0.14 s,while the corrections for the Sg phase range between 0.27 s and 0.35 s,and those for the Pn phase are between-0.86 s and 0.07 s.The spatial distribution of travel-time corrections for Pg,Sg,and Pn phases of 72 stations correlates well with the geological structure in this region.This indicates that the travel-time corrections for Pg and Sg phases are mainly caused by the discrepancy between the actual crustal velocity structure beneath the stations and the 1D South China travel-time model.These corrections empirically compensate for systematic travel-time errors arising from such discrepancies.The primary factor contributing to the travel-time corrections for the Pn phase is the Moho undulations or tilt.These corrections are intended to compensate for systematic errors in travel time caused by variations in the actual Moho.By integrating the obtained travel-time corrections into the HYPO-SAT location algorithm,test results showed an obvious improvement in location accuracy and origin time precision for explosion events.The variation of horizontal distance between repeating earthquake pairs has also improved,with 86%of the repeating earthquake pair spacing being more accurately estimated after correction.This suggests the crucial significance of travel-time correction in earthquake location,and the consideration of travel-time correction exerts a notable impact on enhancing earthquake location accuracy.
文摘Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans.
文摘Objective:To explore nursing measures for elderly patients with chronic obstructive pulmonary disease(COPD)and analyze the effect of continuous nursing pathways on improving the accuracy of aerosol use.Methods:From April 2023 to April 2024,76 elderly COPD patients admitted to our hospital were randomly selected for nursing research.They were divided into two groups using a computer double-blind method,with 38 patients in each group.The control group received routine nursing,while the observation group applied the continuous nursing pathway.The nursing effects of the two groups were investigated and compared,including(1)aerosol accuracy;(2)cardiopulmonary function;(3)subjective well-being and self-care ability;(4)quality of life;and(5)nursing satisfaction.Results:Compared with the control group,the observation group had a significantly higher accuracy rate of aerosol use(P<0.05).Before nursing,there were no significant differences in cardiopulmonary function indicators,MUNSH scores,and ESCA scores between the two groups(P>0.05).After nursing,the patient's cardiopulmonary function improved significantly,and their subjective well-being and self-care ability increased.The observation group was significantly better than the control group in all the above indicators(P<0.05).The quality of life scores of the observation group were significantly higher than those of the control group(P<0.05).Conclusion:In the nursing of elderly patients with chronic obstructive pulmonary disease,the application of the continuous nursing pathway can effectively improve the accuracy of aerosol use and improve patients'cardiopulmonary function.
基金supported in part by the National Key Research and Development Program of China(2021YFA0715503)。
文摘This brief presents a cryogenic voltage reference circuit designed to operate effectively across a wide temperature range from 30 to 300 K.A key feature of the proposed design is utilizing a current subtraction technique for temperature compensation of the reference current,avoiding the deployment of bipolar transistors to reduce area and power consumption.Implemented with a 0.18-μm CMOS process,the circuit achieves a temperature coefficient(TC)of 67.5 ppm/K,which was not achieved in previous works.The design can also attain a power supply rejection(PSR)of 58 d B at 10 k Hz.Meanwhile,the average reference voltage is 1.2 V within a 1.6%3σ-accuracy spread.Additionally,the design is characterized by a minimal power dissipation of 1μW at 30 K and a compact chip area of 0.0035 mm~2.
基金financial supported by National Natural Science Foundation of China (42104010, 42174097, 41974093, and 41774088)the Fundamental Research Funds for the Central Universities
文摘Changes in lake levels, as an indicator of climate change, are crucial for understanding water resources.Satellite altimetry has proven to be an effective technique for monitoring water level changes in inland lakes. However, high-altitude and high-latitude lakes undergo seasonal freezing and melting, affecting satellite altimetry accuracy. This paper evaluates the accuracy of lake level height observations by the CryoSat-2, which uses synthetic aperture radar(SAR) across seasons. First, we used lake boundary based on optical remote sensing data to extract the footprints of CryoSat-2 that fall on Namco and Zhari Namco.After elevation conversion and anomaly identification, we obtained the time series of lake levels. These data were compared and verified against lake levels from in-situ measurements to assess the accuracy of CryoSat-2. The results show that CryoSat-2 can monitor lake level height with an accuracy of about 10-13 cm. The correlation coefficient between CryoSat-2 observations and in-situ measurements over Namco is 0.80(p < 0.01), with a Root Mean Square Error(RMSE) of 13 cm. For Zhari Namco, the correlation coefficient is 0.91, with an RMSE of 10 cm, indicating a better match. At the seasonal scale, the seasonal correlation coefficients between CryoSat-2 and in-situ measurement in Namco are 0.47(spring),0.79(summer), and 0.91(fall) with no observations available for winter. The lower correlation in spring may be due to incomplete ice melting. For Zhari Namco, the seasonal correlation coefficients are 0.89(spring), 0.93(summer), 0.89(fall), and 0.87(winter). The results show that CryoSat-2 accuracy is higher in summer and fall, while slightly lower in spring and winter, indicating that ice formation affects accuracy. Even during winter, the altimetry results do not significantly exceed the in-situ lake water level observations.
基金Supported by the National Natural Science Foundation of China(U1831133)Open Fund of Key Laboratory of Space Active Optoelectronics Technology,Chinese Academy of Sciences(2021ZDKF4)。
文摘Position-sensitive detector(PSD)is widely used in precision measurement fields such as flatness detection,auto-collimator systems,and degrees of freedom testing.However,due to factors such as uneven surface resistance and differences in electrode structures,the nonlinearity of PSD becomes increasingly severe as the photosensitive surface moves from the center toward the edges of the four electrodes.To address this issue,a PSD nonlinearity correction algorithm is proposed.The algorithm utilizes the particle swarm optimization(PSO)algorithm to determine the optimal weights and thresholds,providing better initial parameters for the back propagation(BP)neural network.The BP neural network then iterates continuously until the error conditions are met,completing the correction process.Furthermore,a PSD nonlinearity correction system was developed,and the influence of different spot sizes on PSD positioning accuracy was simulated based on the current equation under the Gaussian spot model.This validated the robustness of the correction algorithm under varying spot sizes.The results demonstrate that the overall optimized error is reduced by 84.51%,and for spot sizes smaller than 1 mm,the error reduction exceeds 93.89%.This method not only meets the measurement accuracy requirements but also extends the measurement range of PSD.
文摘This review comprehensively analyzes advancements in artificial intelligence,particularly machine learning and deep learning,in medical imaging,focusing on their transformative role in enhancing diagnostic accuracy.Our in-depth analysis of 138 selected studies reveals that artificial intelligence(AI)algorithms frequently achieve diagnostic performance comparable to,and often surpassing,that of human experts,excelling in complex pattern recognition.Key findings include earlier detection of conditions like skin cancer and diabetic retinopathy,alongside radiologist-level performance for pneumonia detection on chest X-rays.These technologies profoundly transform imaging by significantly improving processes in classification,segmentation,and sequential analysis across diversemodalities such as X-rays,Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and ultrasound.Specific advancements with Convolutional Neural Networks,Recurrent Neural Networks,and ensemble learning techniques have facilitated more precise diagnosis,prediction,and therapy planning.Notably,Generative Adversarial Networks address limited data through augmentation,while transfer learning efficiently adapts models for scarce labeled datasets,and Reinforcement Learning shows promise in optimizing treatment protocols,collectively advancing patient care.Methodologically,a systematic review(2015-2024)used Scopus and Web of Science databases,yielding 7982 initial records.Of these,1189 underwent bibliometric analysis using the R package‘Bibliometrix’,and 138 were comprehensively reviewed for specific findings.Research output surged over the decade,led by Institute of Electrical and Electronics Engineers(IEEE)Access(19.1%).China dominates publication volume(36.1%),while the United States of America(USA)leads total citations(5605),and Hong Kong exhibits the highest average(55.60).Challenges include rigorous validation,regulatory clarity,and fostering clinician trust.This study highlights significant emerging trends and crucial future research directions for successful AI implementation in healthcare.