期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
UNSTEADY FLOWS OF A GENERALIZED SECOND GRADE FLUID WITH THE FRACTIONAL DERIVATIVE MODEL BETWEEN TWO PARALLEL PLATES 被引量:19
1
作者 谭文长 徐明喻 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期471-476,共6页
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized secon... The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined. 展开更多
关键词 fractional derivative unsteady flows generalized second grade fluid parallel plates
在线阅读 下载PDF
A two-scale second-order moment two-phase turbulence model for simulating dense gas-particle flows 被引量:5
2
作者 Zhuoxiong Zeng Lixing Zhou Jian Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期425-429,共5页
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale flu... A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the sin- gle-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model) in most regions. 展开更多
关键词 Gas-particle flows .second-order moment model . Two-scale fluctuation
在线阅读 下载PDF
Effects of rotation and magnetic field on the nonlinear peristaltic flow of a second-order fluid in an asymmetric channel through a porous medium 被引量:1
3
作者 A. M. Abd-Alla S. M. Abo-Dahab H. D. El-Shahrany 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期303-313,共11页
In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material ... In this paper, the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically. The material is represented by the constitutive equations for a second-order fluid. Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented. The analytical expressions for the pressure gradient, pressure rise, friction force, stream function, shear stress, and velocity are obtained in the physical domain. The effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation, magnetic field, and porosity. The results indicate that the effects of the non-dimensional wave amplitude, porosity, magnetic field, rotation, and the dimensionless time-mean flow are very pronounced in the phenomena. 展开更多
关键词 peristaltic flow second-order fluid magnetic field porous medium
原文传递
SQUEEZE FLOW OF A SECOND-ORDER FLUID BETWEEN TWO PARALLEL DISKS OR TWO SPHERES 被引量:1
4
作者 徐春晖 黄文彬 徐泳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期1057-1064,共8页
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reyn... The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected. 展开更多
关键词 discrete element method second-order fluid squeeze flow normal viscous force small parameter method
在线阅读 下载PDF
GENERAL SECOND ORDER FLUID FLOW IN A PIPE
5
作者 何光渝 黄军旗 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第9期825-831,共7页
It is more satisfactory for fluid materials between viscous and elastic to introducethe fractional calculus approach into the constitutive relationship. This paper employsthe fractional calculus approach to study seco... It is more satisfactory for fluid materials between viscous and elastic to introducethe fractional calculus approach into the constitutive relationship. This paper employsthe fractional calculus approach to study second fluid flow in a paper. First, we derivethe analytical solution which the derivate order is half and then with the analyticalsolution we verify the reliability of Laplace numerical inversion based on Crumpalgouithm for the problem, and finally we analyze the characteristics of second orderfluid flow in a pipe by using Crump method. The results indicate that the more obviousthe viscoelastic properties of fluid is, the more sensitive the dependence of velocity andstress on fractional derivative order is. 展开更多
关键词 second order fluids. axial flow in a pipe integral transforrnation
在线阅读 下载PDF
Differential Quadrature Method for Steady Flow of an Incompressible Second-Order Viscoelastic Fluid and Heat Transfer Model 被引量:1
6
作者 A.S.J.AL-SAIF 朱正佑 《Journal of Shanghai University(English Edition)》 CAS 2005年第4期298-305,共8页
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation... The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained. 展开更多
关键词 differential quadrature method(DQM) second-order viscoelastic fluid steady flow heat transfer.
在线阅读 下载PDF
Three-dimensional channel flow of second grade fluid in rotating frame
7
作者 S.HUSSNAIN A.MEHMOOD A.ALI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第3期289-302,共14页
An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, an... An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, and the upper sheet is a porous solid plate. By suitable transformations, the equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. A series of solutions to this coupled non-linear system are obtained by a powerful analytic technique, i.e., the homotopy analysis method (HAM). The results are presented with graphs. The effects of non-dimensional parameters R, A, M2, a, and K2 on the velocity field are discussed in detail. 展开更多
关键词 three-dimensional flow second grade fluid stretching sheet channel flow rotating frame
在线阅读 下载PDF
Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet
8
作者 S. Nadeem Anwar Hussain +1 位作者 M. Y. Malik T. Hayat 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第10期1255-1262,共8页
This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equati... This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equations which are then solved by the homotopy analysis method (HAM). Two-dimensional and axisymmetric shrinking flow cases are discussed. 展开更多
关键词 stagnation flow second-grade fluid shrinking sheet
在线阅读 下载PDF
SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES
9
作者 曾卓雄 周力行 刘志和 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第10期1373-1381,共9页
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collisi... The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow. 展开更多
关键词 Bingham fluid two-phase flow yield stress second-order moment model
在线阅读 下载PDF
Oscillatory flow of second grade fluid in cylindrical tube 被引量:1
10
作者 A.ALI S.ASGHAR H.H.ALSULAMI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1097-1106,共10页
The unsteady oscillatory flow of an incompressible second grade fluid in a cylindrical tube with large wall suction is studied analytically. Flow in the tube is due to uniform suction at the permeable walls, and the o... The unsteady oscillatory flow of an incompressible second grade fluid in a cylindrical tube with large wall suction is studied analytically. Flow in the tube is due to uniform suction at the permeable walls, and the oscillations in the velocity field are due to small amplitude time harmonic pressure waves. The physical quantities of interest are the velocity field, the amplitude of oscillation, and the penetration depth of the oscillatory wave. The analytical solution of the governing boundary value problem is obtained, and the effects of second grade fluid parameters are analyzed and discussed. 展开更多
关键词 second grade fluid cylindrical coordinate oscillatory flow incompressible flow laminar flow Navier-Stokes equation partial differential equation Wentzel- Kramers-Brillouin (WKB) approximation
在线阅读 下载PDF
SECOND-MOMENT CLOSURE FOR MODELLING THE NEAR-WALL TURBULENCE IN 3D MEAN FLOWS
11
作者 章光华 熊国华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期103-109,共7页
A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotic... A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data. 展开更多
关键词 near-wall turbulence second-moment closure 3D transient channel flow distributions of Reynolds-stress components
在线阅读 下载PDF
Exact analytical solutions for axial flow of a fractional second grade fluid between two coaxial cylinders
12
作者 M.Imran M.Kamran M.Athar 《Theoretical & Applied Mechanics Letters》 CAS 2011年第2期41-46,共6页
The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid,between two infinite coaxial circular cylinders,are determined by applying the Laplace and fin... The velocity field and the adequate shear stress corresponding to the longitudinal flow of a fractional second grade fluid,between two infinite coaxial circular cylinders,are determined by applying the Laplace and finite Hankel transforms.Initially the fluid is at rest,and at time t=0^+, the inner cylinder suddenly begins to translate along the common axis with constant acceleration. The solutions that have been obtained are presented in terms of generalized G functions.Moreover, these solutions satisfy both the governing differential equations and all imposed initial and boundary conditions.The corresponding solutions for ordinary second grade and Newtonian fluids are obtained as limiting cases of the general solutions.Finally,some characteristics of the motion,as well as the influences of the material and fractional parameters on the fluid motion and a comparison between models,are underlined by graphical illustrations. 展开更多
关键词 second grade fluid fractional derivative longitudinal flow velocity field shear stress Laplace and finite Hankel transforms
在线阅读 下载PDF
MHD Flow and Heat Transfer of a Generalized Burgers' Fluid Due to an Exponential Accelerating Plate with Effects of the Second Order Slip and Viscous Dissipation
13
作者 张艳 赵豪杰 白羽 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第6期697-703,共7页
In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an invest... In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an investigation for the magnetohydrodynamic(MHD) flow and heat transfer of an incompressible generalized Burgers' fluid due to an exponential accelerating plate with the effect of the second order velocity slip. The energy equation and momentum equation are coupled by the fractional Burgers' fluid constitutive model. Numerical solutions for velocity, temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm,whose validity is confirmed by the comparison with the analytical solution. Our results show that the influences of the fractional parameters α and β on the flow are opposite each other, which is just like the effects of the two parameters on the temperature. Moreover, the impact trends of the relaxation time λ_1 and retardation time λ_3 on the velocity are opposite each other. Increasing the boundary parameter will promote the temperature, but has little effect on the temperature boundary layer thickness. 展开更多
关键词 magnetohydrodynamic flow generalized Burgers’ fluid the second order velocity slip Riemann–Liouville fractional derivative
原文传递
Exact solutions for the flow of second grade fluid in annulus between torsionally oscillating cylinders
14
作者 Amir Mahmood Saima Parveen Najeeb Alam Khan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期222-227,共6页
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and H... The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions. 展开更多
关键词 second grade fluid · Velocity field · Shear stress · Longitudinal oscillatory flow · Laplace and Hankel transforms
在线阅读 下载PDF
A USM-Θ two-phase turbulence model for simulating dense gas-particle flows 被引量:10
15
作者 Yong Yu Lixing Zhou +1 位作者 Baoguo Wang Feipeng Cai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期228-234,共7页
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin... A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot. 展开更多
关键词 TURBULENCE Two-phase flow second-ordermoment model
在线阅读 下载PDF
Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders 被引量:4
16
作者 A.Mahmood C.Fetecau +1 位作者 N.A.Khan M.Jamil 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期541-550,共10页
The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of th... The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles. 展开更多
关键词 Generalized second grade fluid Velocity field Shear stress Longitudinal oscillatory flow Laplace and Hankel transforms
在线阅读 下载PDF
The second Hopf bifurcation in lid-driven square cavity 被引量:1
17
作者 Tao Wang Tiegang Liu Zheng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期119-125,共7页
To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of... To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of theoretical analyses and numerical simulations. In this paper, we study the characteristics of the second Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme recently developed by us. We numerically identify the critical Reynolds number of the second Hopf bifurcation located in the interval of(11093.75, 11094.3604) by bisection. In addition, we find that there are two dominant frequencies in its spectral diagram when the flow is in the status of the second Hopf bifurcation, while only one dominant frequency is identified if the flow is in the first Hopf bifurcation via the Fourier analysis. More interestingly, the flow phase portrait of velocity components is found to make transition from a regular elliptical closed form for the first Hopf bifurcation to a non-elliptical closed form with self-intersection for the second Hopf bifurcation. Such characteristics disclose flow in a quasi-periodic state when the second Hopf bifurcation occurs. 展开更多
关键词 unsteady lid-driven cavity flows second HOPF bifurcation critical REYNOLDS number numerical simulation
原文传递
Numerical simulation of the effect of void fraction and inlet velocity on two-phase turbulence in bubble-liquid flows 被引量:3
18
作者 Lixing Zhou Rongxian Li Ruxu Du 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期425-432,共8页
There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubbl... There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubble-liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence. 展开更多
关键词 Bubble-liquid flows Two-phase turbulence second-order moment model
在线阅读 下载PDF
Resistance Measured by Airflow Perturbation Compared with Standard Pulmonary Function Measures 被引量:1
19
作者 Tania Haque Jafar Vossoughi +3 位作者 Arthur T. Johnson Wanda Bell-Farrell Thomas Fitzgerald Steven M. Scharf 《Open Journal of Respiratory Diseases》 2013年第2期63-67,共5页
Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respirat... Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respiratory resistance noninvasively and effortlessly. Methods: In a convenience sample of 398 patients undergoing pulmonary function testing, we compared routine spirometric indices (forced expired volume in 1 second (FEV1), peak expiratory flow (PEF)), and airways resistance (Raw-272 patients), to measures of respiratory resistance measured with the APD including inspiratory (IR), expiratory (ER) and averaged (AR) resistance. Results: Measures of lung function were significantly correlated (p 0.001). On regression analysis, between 7% - 17% of the variance (R2) for FEV1, PEF, and Raw was explained by APD measurements. Approximately 2/3 of the variance in FEV1 was explained by PEF measurements. Conclusions: APD measurements of lung function correlate with conventional measures. Future studies should be directed at exploring the use of the APD device in serial measures of lung function in patients with lung disease. 展开更多
关键词 AIRflow PERTURBATION Device PULMONARY Function FORCED Expired Volume in 1 second Peak Expiratory flow AIRWAY RESISTANCE
暂未订购
EFFECT OF EMPIRICAL COEFFICIENTS ON SIMULATION IN TWO-SCALE SECOND-ORDER MOMENT PARTICLE-PHASE TURBULENCE MODEL
20
作者 胡春波 曾卓雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第11期1491-1497,共7页
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluc... A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concept of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision. The proposed model is used to simulate gas-particle downer reactor flows. The computational results of both particle volume fraction and mean velocity are in agreement with the experimental results. After analyzing effects of empirical coefficient on prediction results, we can come to a conclusion that, inside the limit range of empirical coefficient, the predictions do not reveal a large sensitivity to the empirical coefficient in the downer reactor, but a relatively great change of the constants has important effect on the prediction. 展开更多
关键词 two-phase flow second-order moment model two-scale fluctuation empirical coefficients
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部