In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its...In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in...We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.展开更多
Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are we...Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.展开更多
With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential atta...With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential attachment is researched to solve an actual network CCN (Cooperative Communication Network). Firstly, the evolution of CCN is given by four steps with different probabilities. At the same time, the rate equations of nodes degree are presented to analyze the evolution of CCN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation. Finally, the robustness of CCN is studied by numerical simulation with random attack and intentional attack to analyze the effects of degree distribution and average path length. The results of this paper are more significant for building CCN to programme the resource of communication.展开更多
A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the formula of the basic reproductive number for the model and prove that the disease dies out when the basic reproductive numb...A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the formula of the basic reproductive number for the model and prove that the disease dies out when the basic reproductive number is less than unity, while the disease is uniformly persistent when the basic reproductive number is more than unity. Numerical simulations are given to demonstrate the main results.展开更多
A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to charac...A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.展开更多
In this paper a new model for the spread of sexually transmitted diseases (STDs) is presented. The dynamic behaviors of the model on a heterogenons scale-free (SF) network are considered, where the absence of a th...In this paper a new model for the spread of sexually transmitted diseases (STDs) is presented. The dynamic behaviors of the model on a heterogenons scale-free (SF) network are considered, where the absence of a threshold on the SF network is demonstrated, and the stability of the disease-free equilibrium is obtained. Three immunization strategies, uniform immunization, proportional immunization and targeted immunization, are applied in this model. Analytical and simulated results are given to show that the proportional immunization strategy in the model is effective on SF networks.展开更多
Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The e...Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.展开更多
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behavi...A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays ...A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.展开更多
A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalan...A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent ~ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
An improved weighted scale-free network, which has two evolution mechanisms: topological growth and strength dynamics, has been introduced. The topology structure of the model will be explored in details in this work...An improved weighted scale-free network, which has two evolution mechanisms: topological growth and strength dynamics, has been introduced. The topology structure of the model will be explored in details in this work. The evolution driven mechanism of Olami-Feder Christensen (OFC) model is added to our model to study the self-organlzed criticality and the dynamical behavior. We also.consider attack mechanism and the study of the model with attack is also investigated in this paper. We tlnd there are differences between the model with attack and without attack.展开更多
The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example...The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example that has recently gained a lot of scientific attention.It has its roots in social and economic research,as well as the evaluation of network science,such as graph theory.Scientists in this area have subverted predefined theories,offering revolutionary ones regarding interconnected networks,and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon.The motivation of this study is to understand and capture the clustering properties of large networks and social networks.We present a network growth model in this paper and build a scale-free artificial social network with controllable clustering coefficients.The random walk technique is paired with a triangle generating scheme in our proposed model.As a result,the clustering controlmechanism and preferential attachment(PA)have been realized.This research builds on the present random walk model.We took numerous measurements for validation,including degree behavior and the measure of clustering decay in terms of node degree,among other things.Finally,we conclude that our suggested random walk model is more efficient and accurate than previous state-of-the-art methods,and hence it could be a viable alternative for societal evolution.展开更多
In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribu...In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.展开更多
A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The resul...A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.展开更多
In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective sprea...In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Purthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.展开更多
Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that ...Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that these strategies can lead to the eradication of the epidemic by immunizing a small fraction of the nodes in the networks. Particularly, the immunization strategy based on the intentional random walk is extremely efficient for the assortatively mixed networks.展开更多
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free t...In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.展开更多
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ...Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.展开更多
文摘In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金Supported by the National Natural Science Foundation of China (90204012, 60573036) and the Natural Science Foundation of Hebei Province (F2006000177)
文摘We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.
基金This work was partially supported by the National Natural Science Foundation of China(62073173,61833011)the Natural Science Foundation of Jiangsu Province,China(BK20191376)the Nanjing University of Posts and Telecommunications(NY220193,NY220145)。
文摘Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.
基金Project supported by the Natural Science Foundation of Beijing(Grant No.4152035)the National Natural Science Foundation of China(Grant No.61272507)
文摘With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential attachment is researched to solve an actual network CCN (Cooperative Communication Network). Firstly, the evolution of CCN is given by four steps with different probabilities. At the same time, the rate equations of nodes degree are presented to analyze the evolution of CCN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation. Finally, the robustness of CCN is studied by numerical simulation with random attack and intentional attack to analyze the effects of degree distribution and average path length. The results of this paper are more significant for building CCN to programme the resource of communication.
文摘A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the formula of the basic reproductive number for the model and prove that the disease dies out when the basic reproductive number is less than unity, while the disease is uniformly persistent when the basic reproductive number is more than unity. Numerical simulations are given to demonstrate the main results.
基金Supported by National Natural Science Foundation of China under Grant No.71301012
文摘A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.
文摘In this paper a new model for the spread of sexually transmitted diseases (STDs) is presented. The dynamic behaviors of the model on a heterogenons scale-free (SF) network are considered, where the absence of a threshold on the SF network is demonstrated, and the stability of the disease-free equilibrium is obtained. Three immunization strategies, uniform immunization, proportional immunization and targeted immunization, are applied in this model. Analytical and simulated results are given to show that the proportional immunization strategy in the model is effective on SF networks.
基金Project supported by the Natural Science Foundation of the Education Department of Guizhou Province,China (Grant No.20090133)International Cooperative Foundation of Guizhou Province,China (Grant No.20117007)
文摘Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of Ministry of Education of China
文摘A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China.
文摘A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China
文摘A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent ~ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.
基金National Natural Science Foundation of China under Grant No.10675060
文摘An improved weighted scale-free network, which has two evolution mechanisms: topological growth and strength dynamics, has been introduced. The topology structure of the model will be explored in details in this work. The evolution driven mechanism of Olami-Feder Christensen (OFC) model is added to our model to study the self-organlzed criticality and the dynamical behavior. We also.consider attack mechanism and the study of the model with attack is also investigated in this paper. We tlnd there are differences between the model with attack and without attack.
基金This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2021 Yeungnam University Research Grant。
文摘The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example that has recently gained a lot of scientific attention.It has its roots in social and economic research,as well as the evaluation of network science,such as graph theory.Scientists in this area have subverted predefined theories,offering revolutionary ones regarding interconnected networks,and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon.The motivation of this study is to understand and capture the clustering properties of large networks and social networks.We present a network growth model in this paper and build a scale-free artificial social network with controllable clustering coefficients.The random walk technique is paired with a triangle generating scheme in our proposed model.As a result,the clustering controlmechanism and preferential attachment(PA)have been realized.This research builds on the present random walk model.We took numerous measurements for validation,including degree behavior and the measure of clustering decay in terms of node degree,among other things.Finally,we conclude that our suggested random walk model is more efficient and accurate than previous state-of-the-art methods,and hence it could be a viable alternative for societal evolution.
基金The National Natural Science Foundation of China(No70571013,70973017)Program for New Century Excellent Talentsin University (NoNCET-06-0471)Human Social Science Fund Project ofMinistry of Education (No09YJA630020)
文摘In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB705500, the National Natural Science Foundation of China under Grant Nos 10635040, 10532060, 70571074 and 10472116, the Special Research Funds for Theoretical Physics Frontier Problems (A0524701), the President Fund of Chinese Academy of Sciences, the Specialized Research Fund for the Doctoral Programme of Higher Education of China, and the Research Fund of the Education Department of Liaoning Province (20060140). The authors thank Dr Ming Zhao for her comments and suggestions.
文摘A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.
基金Project supported by the National Natural Science Foundation of China(Grant No.60874091)the Six Projects Sponsoring Talent Summits of Jiangsu Province,China(Grant No.SJ209006)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010526)the Graduate Student Innovation Research Project of Jiangsu Province,China(Grant No.CXLX110417)
文摘In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Purthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.
文摘Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that these strategies can lead to the eradication of the epidemic by immunizing a small fraction of the nodes in the networks. Particularly, the immunization strategy based on the intentional random walk is extremely efficient for the assortatively mixed networks.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.F2014203239)the Autonomous Research Fund of Young Teacher in Yanshan University(Grant No.14LGB017)Yanshan University Doctoral Foundation,China(Grant No.B867)
文摘In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.
基金supported by the National Natural Science Foundation of China(Grant No.42076214)Natural Science Foundation of Shandong Province(Grant No.ZR2024QD057).
文摘Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.