期刊文献+
共找到3,582篇文章
< 1 2 180 >
每页显示 20 50 100
Scale transform algorithm used in FMCW SAR data processing 被引量:1
1
作者 Jiang Zhihong Kan Huangfu Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期745-750,共6页
The frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a light-weight, cost-effective, high-resolution imaging radar, which is suitable for a small flight platform. The signal model is de... The frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a light-weight, cost-effective, high-resolution imaging radar, which is suitable for a small flight platform. The signal model is derived for FMCW SAR used in unmanned aerial vehicles (UAV) reconnaissance and remote sensing. An appropriate algorithm is proposed. The algorithm performs the range cell migration correction (RCMC) for continuous nonchirped raw data using the energy invariance of the scaling of a signal in the scale domain. The azimuth processing is based on step transform without geometric resampling operation. The complete derivation of the algorithm is presented. The algorithm performance is shown by simulation results. 展开更多
关键词 FMCW SAR radar imaging scale transform step transform
在线阅读 下载PDF
Preliminary Application of Scale Transformation Stochastic Resonance in Dual-Sequence Frequency Hopping System 被引量:1
2
作者 LIU Guangkai SUN Huixian +3 位作者 QUAN Houde CUI Peizhang ZHU Shilei CHI Kuo 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第6期775-781,共7页
Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the ou... Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the output signal to noise ratio(SNR)is raised effectively,at the same time,the symbol reception is completed for DSFH at low input SNR.Firstly,the radio frequency(RF)and intermediate frequency(IF)signals are analyzed based on the super-heterodyne reception of DSFH;secondly,the equations of probability density function(PDF),output power spectrum and SNR of the STSR output are derived for the IF signal;finally,the algorithm of the optimal matching STSR is proposed with the optimal matching parameters.The simulation results show that the algorithm can effectively solve the detection failure,as the global output SNR of DSFH is strongly improved that the output SNR can reach-17.72 d B when the input SNR is-20 d B after the processing of the optimal matching STSR. 展开更多
关键词 the dual-sequence frequency hopping(DSFH) detection of weak signal scale transformation stochastic resonance(STSR) the optimal matching stochastic resonance
原文传递
Estimation of Scale Transformation for Approximate Periodic Time Series with Long-Term Trend
3
作者 Shujin WU 《Journal of Mathematical Research with Applications》 CSCD 2021年第3期238-258,共21页
Approximate periodic time series means it has an approximate periodic trend.The so-called approximate periodicity refers that it looks like having periodicity,however the length of each period is not constant such as ... Approximate periodic time series means it has an approximate periodic trend.The so-called approximate periodicity refers that it looks like having periodicity,however the length of each period is not constant such as sunspot data.Approximate periodic time series has a wide application prospect in modelling social economic phenomenon.As for approximate periodic time series,the key problem is to depict its approximate periodic trend because it can be dealt as an ordinary time series only if its approximate periodic trend has been depicted.However,there is little study on depicting approximate periodic trend.In the paper,the authors first establish some necessary theories,especially bring forward the concept of shape-retention transformation with lengthwise compression and obtain necessary and sufficient condition for linear shape-retention transformation with lengthwise compression,then basing on the theories the authors present a method to estimate scale transformation,which can model approximate periodic trend very clearly.At last,a simulated example is analyzed by this presented method.The results show that the presented method is very effective and very powerful. 展开更多
关键词 time series approximate periodicity scale transformation shape-retention transformation with lengthwise compression
原文传递
Solving Schrodinger Equation with Non-Uniform Grids by Scale Transformation Method
4
作者 马玉涛 刘理天 李志坚 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2000年第9期853-856,共4页
A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, ... A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method. 展开更多
关键词 SCHRODINGER EQUATION non-umiform grids
在线阅读 下载PDF
An infrared and visible image fusion method based upon multi-scale and top-hat transforms 被引量:1
5
作者 Gui-Qing He Qi-Qi Zhang +3 位作者 Hai-Xi Zhang Jia-Qi Ji Dan-Dan Dong Jun Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期340-348,共9页
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar... The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced. 展开更多
关键词 infrared and visible image fusion multi-scale transform mathematical morphology top-hat trans- form
原文传递
基于时序二维变换和多尺度Transformer的电能质量扰动分类方法 被引量:2
6
作者 王守相 李慧强 +3 位作者 赵倩宇 郭陆阳 王同勋 王洋 《电力系统自动化》 北大核心 2025年第7期198-207,共10页
随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利... 随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利用时序二维变换将一维PQD时间序列转换为一组基于多个周期的二维张量,以实现在二维空间中深入挖掘PQD信号中所包含的特征信息。然后,通过多尺度Transformer编码器模块提取PQD信号的多尺度特征图,利用多尺度Transformer解码器模块对多尺度特征图进行拼接和特征融合,有效合并在不同尺度上提取的特征图。最后,通过全连接层和Softmax分类器完成PQD分类任务。为验证所提方法的有效性,建立了含24种PQD的数据集对模型进行测试,结果表明所提方法对PQD信号具有较高的分类准确率和噪声鲁棒性。 展开更多
关键词 电能质量 扰动 分类 时序二维变换 多尺度transformer 特征提取 特征融合
在线阅读 下载PDF
一种融合Transformer的多尺度结构图像去模糊方法
7
作者 郭业才 阳刚 毛湘南 《电光与控制》 北大核心 2025年第3期62-68,共7页
针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模... 针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模块利用双旁路结构将局部特征信息和全局特征信息有效地结合起来,同时简化Transformer以提升计算效率;其次,为了缓解卷积操作缺乏输入内容自适应的缺点,将通道注意力引入到特征融合模块中来动态地学习有用信息;最后,在基准数据集GoPro上,所提方法取得的峰值信噪比为31.87 dB,结构相似度为0.952。实验结果表明,所提方法与主流方法相比能够有效地复原图像细节特征,并且能够提升后续计算机视觉任务的鲁棒性。 展开更多
关键词 图像去模糊 多尺度结构 transformER 卷积神经网络 注意力机制
在线阅读 下载PDF
Comment on 'The scale-transformation of electromagnetic theory and its applications','Distribution characteristic of scattering field for an ellipsoidal target irradiated by an electromagnetic wave from an arbitrary direction' and 'Electric fields inside a
8
作者 赵诗华 李英骏 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期37-38,共2页
It is shown that the ’scale-transformation’ method proposed by Li Ying-Le et al.is not applicable to the Maxwell theory.
关键词 scale transformation Maxwell theory vacuum light speed
全文增补中
Spectral matching algorithm based on nonsubsampled contourlet transform and scale-invariant feature transform 被引量:4
9
作者 Dong Liang Pu Yan +2 位作者 Ming Zhu Yizheng Fan Kui Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期453-459,共7页
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq... A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy. 展开更多
关键词 point pattern matching nonsubsampled contourlet transform scale-invariant feature transform spectral algorithm.
在线阅读 下载PDF
融合通道注意力的跨尺度Transformer图像超分辨率重建 被引量:1
10
作者 李焱 董仕豪 +2 位作者 张家伟 赵茹 郑钰辉 《中国图象图形学报》 北大核心 2025年第3期784-797,共14页
目的针对在超分辨率任务中,Transformer模型存在特征提取模式单一、重建图像高频细节丢失和结构失真的问题,提出了一种融合通道注意力的跨尺度Transformer图像超分辨率重建模型。方法模型由4个模块组成:浅层特征提取、跨尺度深层特征提... 目的针对在超分辨率任务中,Transformer模型存在特征提取模式单一、重建图像高频细节丢失和结构失真的问题,提出了一种融合通道注意力的跨尺度Transformer图像超分辨率重建模型。方法模型由4个模块组成:浅层特征提取、跨尺度深层特征提取、多级特征融合以及高质量重建模块。浅层特征提取利用卷积处理早期图像,获得更稳定的输出;跨尺度深层特征提取利用跨尺度Transformer和强化通道注意力机制,扩大感受野并通过加权筛选提取不同尺度特征以便融合;多级特征融合模块利用强化通道注意力机制,实现对不同尺度特征通道权重的动态调整,促进模型对丰富上下文信息的学习,增强模型在图像超分辨率重建任务中的能力。结果在Set5、Set14、BSD100(Berkeley segmentation dataset 100)、Urban100(urban scene 100)和Manga109标准数据集上的模型评估结果表明,相较于SwinIR超分辨率模型,所提模型在峰值信噪比上提高了0.06~0.25 dB,且重建图像视觉效果更好。结论提出的融合通道注意力的跨尺度Transformer图像超分辨率重建模型,通过融合卷积特征与Transformer特征,并利用强化通道注意力机制减少图像中噪声和冗余信息,降低模型产生图像模糊失真的可能性,图像超分辨率性能有效提升,在多个公共实验数据集的测试结果验证了所提模型的有效性。 展开更多
关键词 图像超分辨率 跨尺度transformer 通道注意力机制 特征融合 深度学习
原文传递
Effects of Coiling Temperature and Cooling Condition on Transformation Behavior of Tertiary Oxide Scale 被引量:3
11
作者 Guang-ming CAO Teng-zhi WU +3 位作者 Rong XU Zhi-feng LI Fu-xiang WANG Zhen-yu LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第10期892-896,共5页
The influences of coiling temperature and cooling condition on structural transformation of the hot-rolled tertiary oxide scale formed under continuous cooling conditions were studied by thermal gravimetric analyzer. ... The influences of coiling temperature and cooling condition on structural transformation of the hot-rolled tertiary oxide scale formed under continuous cooling conditions were studied by thermal gravimetric analyzer. The fourth oxide scale formed under different conditions were classified and plotted. Because the oxide scale structure transformation is diffusion-controlled and the transformation law is similar to "C" curve, the eutectoid transformation nose temperature is 450 ℃. Under condition of low temperature and high cooling rate, ion diffusion behavior is restricted so that the eutectoid reaction is suppressed, resulting in that the fourth oxide scale is mainly made up of pre-eutectoid Fe304 and FeO without eu- tectoid products. From scale structure transition diagram, the eutectoid reaction process was affected by coiling temperature and cooling rate, leading to various scale structures. 展开更多
关键词 oxide scale eutectoid transformation continuous cooling coiling temperature cooling rate
原文传递
Digital watermarking algorithm based on scale-invariant feature regions in non-subsampled contourlet transform domain 被引量:8
12
作者 Jian Zhao Na Zhang +1 位作者 Jian Jia Huanwei Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1310-1315,共6页
Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy... Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached. 展开更多
关键词 multi-scale geometric analysis (MGA) non-subsampled contourlet transform (NSCT) scale-invariant featureregion.
在线阅读 下载PDF
Generalized canonical transformation for second-order Birkhoffian systems on time scales 被引量:5
13
作者 Y.Zhang X.H.Zhai 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第6期353-357,共5页
The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems o... The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results. 展开更多
关键词 BIRKHOFFIAN systems GENERALIZED CANONICAL transformation Time scales CALCULUS Generating function
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法 被引量:1
14
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin transformer模块 多尺度胶囊Swin transformer网络 SAR图像目标识别
在线阅读 下载PDF
Denoising of seismic data via multi-scale ridgelet transform 被引量:4
15
作者 Henglei Zhang Tianyou Liu Yuncui Zhang 《Earthquake Science》 CSCD 2009年第5期493-498,共6页
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c... Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved. 展开更多
关键词 ridgelet transform MULTI-scale random noise sub-band decomposition complex Morlet wavelet
在线阅读 下载PDF
CATrans:基于跨尺度注意力Transformer的高分辨率遥感影像土地覆盖语义分割框架 被引量:1
16
作者 陈丽佳 陈宏辉 +3 位作者 谢艳秋 何天友 叶菁 吴林煌 《地球信息科学学报》 北大核心 2025年第7期1624-1637,共14页
【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力... 【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力,影响了推理分割质量。【方法】为了解决这一问题,本文提出了一种联合跨尺度注意力和语义视觉Transformer的遥感影像分割框架(Cross-scale Attention Transformer,CATrans),融合跨尺度注意力模块和语义视觉Transformer,提取上下文先验知识增强局部特征表示和分割性能。首先,跨尺度注意力模块通过空间和通道两个维度进行并行特征处理,分析浅层-深层和局部-全局特征之间的依赖关系,提升对遥感影像中不同粒度对象的注意力。其次,语义视觉Transformer通过空间注意力机制捕捉上下文语义信息,建模语义信息之间的依赖关系。【结果】本文在DeepGlobe、Inria Aerial和LoveDA数据集上进行对比实验,结果表明:CATrans的分割性能优于现有的WSDNet(Discrete Wavelet Smooth Network)和ISDNet(Integrating Shallow and Deep Network)等分割算法,分别取得了76.2%、79.2%、54.2%的平均交并比(Mean Intersection over Union,mIoU)和86.5%、87.8%、66.8%的平均F1得分(Mean F1 Score,mF1),推理速度分别达到38.1 FPS、13.2 FPS和95.22 FPS。相较于本文所对比的最佳方法WSDNet,mIoU和mF1在3个数据集中分别提升2.1%、4.0%、5.3%和1.3%、1.8%、5.6%,在每类地物的分割中都具有显著优势。【结论】本方法实现了高效率、高精度的高分辨率遥感影像语义分割。 展开更多
关键词 高分辨率 语义分割 跨尺度注意力 视觉transformer 上下文先验 空间注意力 语义信息
原文传递
多维度聚合Transformer的图像超分辨率重建 被引量:1
17
作者 陈清江 陈鹏民 《光学精密工程》 北大核心 2025年第12期1955-1970,共16页
针对现有基于Transformer的图像超分辨率网络中感受野尺度单一以及未充分挖掘额外维度信息等问题,本文提出了一种多维度聚合Transformer网络。首先,通过构建多尺度交互调制模块,从低分辨率图像中提取多尺度特征,以增强信息流的丰富性。... 针对现有基于Transformer的图像超分辨率网络中感受野尺度单一以及未充分挖掘额外维度信息等问题,本文提出了一种多维度聚合Transformer网络。首先,通过构建多尺度交互调制模块,从低分辨率图像中提取多尺度特征,以增强信息流的丰富性。其次,设计了空间-通道交互模块,并将其集成于Transformer层中,利用四种形式的注意力机制充分提取关键特征并实现特征融合,从而提升模型性能。最后,提出了特征重用Transformer模块,深入挖掘各层特征之间的关联,精准提取并高效重用重要特征,进一步加强模型表现。实验结果表明,在五个基准测试集上,所提方法优于其他先进算法。在不同放大倍数的超分辨率任务中,相较于基于Swin Transformer的图像恢复方法,峰值信噪比和结构相似度分别平均提升了约0.26 dB和0.0024,且重建效果更加清晰。该方法有效克服了现有方法的不足,在超分辨率任务中展现出显著的性能提升和应用潜力。 展开更多
关键词 图像超分辨率 transformER 注意力机制 特征交互 特征重用 多尺度
在线阅读 下载PDF
MSMVT:多尺度和多视图Transformer半监督医学图像分割框架 被引量:3
18
作者 李飞翔 降爱莲 《计算机工程与应用》 北大核心 2025年第2期273-282,共10页
近年来,Transformer在众多监督式计算机视觉任务中取得了显著进展,然而由于高质量医学标注图像的缺乏,其在半监督图像分割领域的性能仍有待提高。为此,提出了一种基于多尺度和多视图Transformer的半监督医学图像分割框架:MSMVT(multi-sc... 近年来,Transformer在众多监督式计算机视觉任务中取得了显著进展,然而由于高质量医学标注图像的缺乏,其在半监督图像分割领域的性能仍有待提高。为此,提出了一种基于多尺度和多视图Transformer的半监督医学图像分割框架:MSMVT(multi-scale and multi-view transformer)。鉴于对比学习在Transformer的预训练中取得的良好效果,设计了一个基于伪标签引导的多尺度原型对比学习模块。该模块利用图像金字塔数据增强技术,为无标签图像生成富有语义信息的多尺度原型表示;通过对比学习,强化了不同尺度原型之间的一致性,从而有效缓解了由标签稀缺性导致的Transformer训练不足的问题。此外,为了增强Transformer模型训练的稳定性,提出了多视图一致性学习策略。通过弱扰动视图,以校正多个强扰动视图。通过最小化不同视图之间的输出差异性,使得模型能够对不同扰动保持多层次的一致性。实验结果表明,当仅采用10%的标注比例时,提出的MSMVT框架在ACDC、LIDC和ISIC三个公共数据集上的DSC图像分割性能指标分别达到了88.93%、84.75%和85.38%,优于现有的半监督医学图像分割方法。 展开更多
关键词 半监督医学图像分割 伪标签 transformER 多尺度 多视图
在线阅读 下载PDF
基于轻量级多尺度CNN-Transformer网络的鼻咽癌诊断方法
19
作者 任宇 杨鹏 +3 位作者 范小琴 汪天富 聂国辉 雷柏英 《中国生物医学工程学报》 北大核心 2025年第3期279-290,共12页
深度学习(DL)技术是辅助临床医生进行内窥镜图像中鼻咽癌(NPC)肿瘤物的诊断重要手段,但其面临两个挑战:1)图像局部区域的视觉信息相似而冗余,可能会导致低效的计算效率;2)全局信息和局部特征之间的长期的动态交互往往会导致无效的学习,... 深度学习(DL)技术是辅助临床医生进行内窥镜图像中鼻咽癌(NPC)肿瘤物的诊断重要手段,但其面临两个挑战:1)图像局部区域的视觉信息相似而冗余,可能会导致低效的计算效率;2)全局信息和局部特征之间的长期的动态交互往往会导致无效的学习,同时增加冗余计算。针对上述问题,提出了一种轻量级多尺度CNN-Transformer网络,称为L-MTransNet。该网络由多尺度的卷积神经网络(MCNN)块和具有动态卷积的多尺度CNN-Transformer(MTrans)构成。首先,MCNN用于提取内窥镜数据的多尺度的局部特征,降低局部信息的冗余;其次,为了在同一特征层级具有精细和粗糙的多尺度特征表示,并且重构每个多尺度局部特征间的全局关系,多路径视觉Transformer(MPViT)和动态卷积Transformer(TransNet)组成的MTrans模块被构建。其赋予网络较强的归纳偏置和全局信息交互能力,缓解特征的表示差异和提升融合效率。基于深圳市第二人民医院采集的300例患者的临床内窥镜数据集进行验证实验。结果证明,分类准确率为94.53%±0.35%,F1-评分为94.17%±0.34%,AUC达到98.61%±0.07%,同时具有较低的计算成本,参数为5.9 M,FLOPs为7.6 G。所提出的方法展现出了良好的效果,有望应用于内窥镜图像的NPC肿瘤早期筛查。 展开更多
关键词 鼻咽癌 轻量级 多尺度 transformER 动态卷积
暂未订购
Multi-scale phase average waveform of electroencephalogram signals in childhood absence epilepsy using wavelet transformation 被引量:1
20
作者 Meiyun Zhang Benshu Zhang +2 位作者 Fenglou Wang Ying Chen Nan Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第10期774-780,共7页
BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves ... BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model. 展开更多
关键词 EEG MULTI-scale absence epilepsy wavelet transform phase average waveform neuroelectrophysiology neural regeneration
暂未订购
上一页 1 2 180 下一页 到第
使用帮助 返回顶部