The frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a light-weight, cost-effective, high-resolution imaging radar, which is suitable for a small flight platform. The signal model is de...The frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a light-weight, cost-effective, high-resolution imaging radar, which is suitable for a small flight platform. The signal model is derived for FMCW SAR used in unmanned aerial vehicles (UAV) reconnaissance and remote sensing. An appropriate algorithm is proposed. The algorithm performs the range cell migration correction (RCMC) for continuous nonchirped raw data using the energy invariance of the scaling of a signal in the scale domain. The azimuth processing is based on step transform without geometric resampling operation. The complete derivation of the algorithm is presented. The algorithm performance is shown by simulation results.展开更多
Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the ou...Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the output signal to noise ratio(SNR)is raised effectively,at the same time,the symbol reception is completed for DSFH at low input SNR.Firstly,the radio frequency(RF)and intermediate frequency(IF)signals are analyzed based on the super-heterodyne reception of DSFH;secondly,the equations of probability density function(PDF),output power spectrum and SNR of the STSR output are derived for the IF signal;finally,the algorithm of the optimal matching STSR is proposed with the optimal matching parameters.The simulation results show that the algorithm can effectively solve the detection failure,as the global output SNR of DSFH is strongly improved that the output SNR can reach-17.72 d B when the input SNR is-20 d B after the processing of the optimal matching STSR.展开更多
Approximate periodic time series means it has an approximate periodic trend.The so-called approximate periodicity refers that it looks like having periodicity,however the length of each period is not constant such as ...Approximate periodic time series means it has an approximate periodic trend.The so-called approximate periodicity refers that it looks like having periodicity,however the length of each period is not constant such as sunspot data.Approximate periodic time series has a wide application prospect in modelling social economic phenomenon.As for approximate periodic time series,the key problem is to depict its approximate periodic trend because it can be dealt as an ordinary time series only if its approximate periodic trend has been depicted.However,there is little study on depicting approximate periodic trend.In the paper,the authors first establish some necessary theories,especially bring forward the concept of shape-retention transformation with lengthwise compression and obtain necessary and sufficient condition for linear shape-retention transformation with lengthwise compression,then basing on the theories the authors present a method to estimate scale transformation,which can model approximate periodic trend very clearly.At last,a simulated example is analyzed by this presented method.The results show that the presented method is very effective and very powerful.展开更多
A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, ...A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.展开更多
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq...A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.展开更多
The influences of coiling temperature and cooling condition on structural transformation of the hot-rolled tertiary oxide scale formed under continuous cooling conditions were studied by thermal gravimetric analyzer. ...The influences of coiling temperature and cooling condition on structural transformation of the hot-rolled tertiary oxide scale formed under continuous cooling conditions were studied by thermal gravimetric analyzer. The fourth oxide scale formed under different conditions were classified and plotted. Because the oxide scale structure transformation is diffusion-controlled and the transformation law is similar to "C" curve, the eutectoid transformation nose temperature is 450 ℃. Under condition of low temperature and high cooling rate, ion diffusion behavior is restricted so that the eutectoid reaction is suppressed, resulting in that the fourth oxide scale is mainly made up of pre-eutectoid Fe304 and FeO without eu- tectoid products. From scale structure transition diagram, the eutectoid reaction process was affected by coiling temperature and cooling rate, leading to various scale structures.展开更多
Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy...Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached.展开更多
The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems o...The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results.展开更多
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c...Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.展开更多
【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力...【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力,影响了推理分割质量。【方法】为了解决这一问题,本文提出了一种联合跨尺度注意力和语义视觉Transformer的遥感影像分割框架(Cross-scale Attention Transformer,CATrans),融合跨尺度注意力模块和语义视觉Transformer,提取上下文先验知识增强局部特征表示和分割性能。首先,跨尺度注意力模块通过空间和通道两个维度进行并行特征处理,分析浅层-深层和局部-全局特征之间的依赖关系,提升对遥感影像中不同粒度对象的注意力。其次,语义视觉Transformer通过空间注意力机制捕捉上下文语义信息,建模语义信息之间的依赖关系。【结果】本文在DeepGlobe、Inria Aerial和LoveDA数据集上进行对比实验,结果表明:CATrans的分割性能优于现有的WSDNet(Discrete Wavelet Smooth Network)和ISDNet(Integrating Shallow and Deep Network)等分割算法,分别取得了76.2%、79.2%、54.2%的平均交并比(Mean Intersection over Union,mIoU)和86.5%、87.8%、66.8%的平均F1得分(Mean F1 Score,mF1),推理速度分别达到38.1 FPS、13.2 FPS和95.22 FPS。相较于本文所对比的最佳方法WSDNet,mIoU和mF1在3个数据集中分别提升2.1%、4.0%、5.3%和1.3%、1.8%、5.6%,在每类地物的分割中都具有显著优势。【结论】本方法实现了高效率、高精度的高分辨率遥感影像语义分割。展开更多
近年来,Transformer在众多监督式计算机视觉任务中取得了显著进展,然而由于高质量医学标注图像的缺乏,其在半监督图像分割领域的性能仍有待提高。为此,提出了一种基于多尺度和多视图Transformer的半监督医学图像分割框架:MSMVT(multi-sc...近年来,Transformer在众多监督式计算机视觉任务中取得了显著进展,然而由于高质量医学标注图像的缺乏,其在半监督图像分割领域的性能仍有待提高。为此,提出了一种基于多尺度和多视图Transformer的半监督医学图像分割框架:MSMVT(multi-scale and multi-view transformer)。鉴于对比学习在Transformer的预训练中取得的良好效果,设计了一个基于伪标签引导的多尺度原型对比学习模块。该模块利用图像金字塔数据增强技术,为无标签图像生成富有语义信息的多尺度原型表示;通过对比学习,强化了不同尺度原型之间的一致性,从而有效缓解了由标签稀缺性导致的Transformer训练不足的问题。此外,为了增强Transformer模型训练的稳定性,提出了多视图一致性学习策略。通过弱扰动视图,以校正多个强扰动视图。通过最小化不同视图之间的输出差异性,使得模型能够对不同扰动保持多层次的一致性。实验结果表明,当仅采用10%的标注比例时,提出的MSMVT框架在ACDC、LIDC和ISIC三个公共数据集上的DSC图像分割性能指标分别达到了88.93%、84.75%和85.38%,优于现有的半监督医学图像分割方法。展开更多
BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves ...BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model.展开更多
文摘The frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a light-weight, cost-effective, high-resolution imaging radar, which is suitable for a small flight platform. The signal model is derived for FMCW SAR used in unmanned aerial vehicles (UAV) reconnaissance and remote sensing. An appropriate algorithm is proposed. The algorithm performs the range cell migration correction (RCMC) for continuous nonchirped raw data using the energy invariance of the scaling of a signal in the scale domain. The azimuth processing is based on step transform without geometric resampling operation. The complete derivation of the algorithm is presented. The algorithm performance is shown by simulation results.
基金the Natural Science of Foundation of Hebei Province(No.F2017506006)
文摘Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the output signal to noise ratio(SNR)is raised effectively,at the same time,the symbol reception is completed for DSFH at low input SNR.Firstly,the radio frequency(RF)and intermediate frequency(IF)signals are analyzed based on the super-heterodyne reception of DSFH;secondly,the equations of probability density function(PDF),output power spectrum and SNR of the STSR output are derived for the IF signal;finally,the algorithm of the optimal matching STSR is proposed with the optimal matching parameters.The simulation results show that the algorithm can effectively solve the detection failure,as the global output SNR of DSFH is strongly improved that the output SNR can reach-17.72 d B when the input SNR is-20 d B after the processing of the optimal matching STSR.
基金Supported by the National Natural Science Foundation of China(Grant No.11471120)the Science and Technology Commission of Shanghai Municipality(Grant No.19JC1420100)。
文摘Approximate periodic time series means it has an approximate periodic trend.The so-called approximate periodicity refers that it looks like having periodicity,however the length of each period is not constant such as sunspot data.Approximate periodic time series has a wide application prospect in modelling social economic phenomenon.As for approximate periodic time series,the key problem is to depict its approximate periodic trend because it can be dealt as an ordinary time series only if its approximate periodic trend has been depicted.However,there is little study on depicting approximate periodic trend.In the paper,the authors first establish some necessary theories,especially bring forward the concept of shape-retention transformation with lengthwise compression and obtain necessary and sufficient condition for linear shape-retention transformation with lengthwise compression,then basing on the theories the authors present a method to estimate scale transformation,which can model approximate periodic trend very clearly.At last,a simulated example is analyzed by this presented method.The results show that the presented method is very effective and very powerful.
文摘A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
基金supported by the National Natural Science Foundation of China (6117212711071002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20113401110006)the Innovative Research Team of 211 Project in Anhui University (KJTD007A)
文摘A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.
基金Item Sponsored by National Natural Science Foundation of China(51204047)National High Technology Research and Development Program of China(2011BAE13B04)Fundamental Research Funds for the Central Universities of China(N130407004)
文摘The influences of coiling temperature and cooling condition on structural transformation of the hot-rolled tertiary oxide scale formed under continuous cooling conditions were studied by thermal gravimetric analyzer. The fourth oxide scale formed under different conditions were classified and plotted. Because the oxide scale structure transformation is diffusion-controlled and the transformation law is similar to "C" curve, the eutectoid transformation nose temperature is 450 ℃. Under condition of low temperature and high cooling rate, ion diffusion behavior is restricted so that the eutectoid reaction is suppressed, resulting in that the fourth oxide scale is mainly made up of pre-eutectoid Fe304 and FeO without eu- tectoid products. From scale structure transition diagram, the eutectoid reaction process was affected by coiling temperature and cooling rate, leading to various scale structures.
基金supported by the National Natural Science Foundation of China(61379010)the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6293)
文摘Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached.
基金supported by the National Natural Science Foundation of China(Grants 11972241 and 11572212)
文摘The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results.
基金supported by China Petrochemical key project during the 11th Five-year Plan as well as the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.
文摘【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力,影响了推理分割质量。【方法】为了解决这一问题,本文提出了一种联合跨尺度注意力和语义视觉Transformer的遥感影像分割框架(Cross-scale Attention Transformer,CATrans),融合跨尺度注意力模块和语义视觉Transformer,提取上下文先验知识增强局部特征表示和分割性能。首先,跨尺度注意力模块通过空间和通道两个维度进行并行特征处理,分析浅层-深层和局部-全局特征之间的依赖关系,提升对遥感影像中不同粒度对象的注意力。其次,语义视觉Transformer通过空间注意力机制捕捉上下文语义信息,建模语义信息之间的依赖关系。【结果】本文在DeepGlobe、Inria Aerial和LoveDA数据集上进行对比实验,结果表明:CATrans的分割性能优于现有的WSDNet(Discrete Wavelet Smooth Network)和ISDNet(Integrating Shallow and Deep Network)等分割算法,分别取得了76.2%、79.2%、54.2%的平均交并比(Mean Intersection over Union,mIoU)和86.5%、87.8%、66.8%的平均F1得分(Mean F1 Score,mF1),推理速度分别达到38.1 FPS、13.2 FPS和95.22 FPS。相较于本文所对比的最佳方法WSDNet,mIoU和mF1在3个数据集中分别提升2.1%、4.0%、5.3%和1.3%、1.8%、5.6%,在每类地物的分割中都具有显著优势。【结论】本方法实现了高效率、高精度的高分辨率遥感影像语义分割。
文摘近年来,Transformer在众多监督式计算机视觉任务中取得了显著进展,然而由于高质量医学标注图像的缺乏,其在半监督图像分割领域的性能仍有待提高。为此,提出了一种基于多尺度和多视图Transformer的半监督医学图像分割框架:MSMVT(multi-scale and multi-view transformer)。鉴于对比学习在Transformer的预训练中取得的良好效果,设计了一个基于伪标签引导的多尺度原型对比学习模块。该模块利用图像金字塔数据增强技术,为无标签图像生成富有语义信息的多尺度原型表示;通过对比学习,强化了不同尺度原型之间的一致性,从而有效缓解了由标签稀缺性导致的Transformer训练不足的问题。此外,为了增强Transformer模型训练的稳定性,提出了多视图一致性学习策略。通过弱扰动视图,以校正多个强扰动视图。通过最小化不同视图之间的输出差异性,使得模型能够对不同扰动保持多层次的一致性。实验结果表明,当仅采用10%的标注比例时,提出的MSMVT框架在ACDC、LIDC和ISIC三个公共数据集上的DSC图像分割性能指标分别达到了88.93%、84.75%和85.38%,优于现有的半监督医学图像分割方法。
基金the National Natural Science Foundation of China,No. 60703045
文摘BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model.