期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Fractal Behaviour of Atomic Scale Microstructures:an Introduction
1
作者 沙维 《Rare Metals》 SCIE EI CAS CSCD 1993年第3期227-228,共2页
The properties of all materials depend largely on their chemical compositions.Compositional analysis by using the atom probe suggests that it is necessary to invent new parameters to describe some aspects of microstru... The properties of all materials depend largely on their chemical compositions.Compositional analysis by using the atom probe suggests that it is necessary to invent new parameters to describe some aspects of microstructures.Experimental and calculation work indicates that fractal dimension can be used to describe structural aspects not readily expressible with normal parameters.The application of fractal concept in mate- rials studies will enable us to understand from a brand-new angle the ultra-fine microstructures of materials. 展开更多
关键词 Fractal dimension Atomic scale microstructure Fe-Cr based alloys MICROCHEMISTRY
在线阅读 下载PDF
Multi-scale analysis of microstructural evolution and atomic bonding mechanisms in CoCrFeMnNi high-entropy alloys upon cold spray impact
2
作者 R.Nikbakht M.Saadati +2 位作者 H.S.Kim M.Jahazi R.R.Chromik 《Journal of Materials Science & Technology》 2025年第5期263-277,共15页
Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic pla... Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic plasticity,which is claimed to promote bonding even without ASI.A thorough microstructural analysis is vital to fully understand the bonding mechanisms at play during microparticle impacts and throughout the CS process.In this study,the HEA CoCrFeMnNi,known for its relatively high strain hardening and resistance to softening,was selected to investigate the microstructure characteristics and bonding mech-anisms in CS.This study used characterization techniques covering a range of length scales,including electron channeling contrast imaging(ECCI),electron backscatter diffraction(EBSD),and high-resolution transmission microscopy(HR-TEM),to explore the microstructure characteristics of bonding and overall structure development of CoCrFeMnNi microparticles after impact in CS.HR-TEM lamellae were prepared using focused ion beam milling.Additionally,the effects of deformation field variables on microstructure development were determined through finite element modeling(FEM)of microparticle impacts.The ECCI,EBSD,and HR-TEM analyses revealed an interplay between dislocation-driven processes and twinning,leading to the development of four distinct deformation microstructures.Significant grain refinement occurs at the interface through continuous dynamic recrystallization(CDRX)due to high strain and temperature rise from adiabatic deformation,signs of softening,and ASI.Near the interface,a necklace-like structure of refined grains forms around grain boundaries,along with elongated grains,resulting from the coexistence of dynamic recovery and discontinuous dynamic recrystallization(DDRX)due to lower temperature rise and strain.Towards the particle or substrate interior,concurrent twinning and dislocation-mediated mechanisms refine the structure,forming straight,curved,and intersected twins.At the top of the particles,only deformed grains with a low dislocation density are observed.Our results showed that DRX induces microstructure softening in highly strained interface areas,facilitating atomic bonding in CoCrFeMnNi.HR-TEM investigation confirms the formation of atomic bonds between particles and substrate,with a gradual change in crystal lattice orientation from the particle to the substrate and the occurrence of some misfit dislocations and vacancies at the interface.Finally,the findings of this research suggest that softening and ASI,even in materials resistant to softening,are required to establish bonding in CS. 展开更多
关键词 Multi-length scale microstructure characteristics of bonding in cold spray DRX-induced softening and its role in bonding Interplay between twinning-induced hardening and DRX-driven softening EBSD&HR-TEM CoCrFeMnNi high entropy alloys
原文传递
Effect of Microstructure Scale on Negative Thermal Expansion of Antiperovskite Manganese Nitride 被引量:3
3
作者 Zhonghua Sun Xiaoyan Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第9期903-909,共7页
The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0.... The negative thermal expansion (NTE) properties of the antiperovskite manganese nitrides with micron-scale, submicron-scale and nanometer-scale microstructures, respectively, were investigated using the Mn3Cu0.5Ge0.5N composition as an example. It was discovered that the NTE start temperature, NTE operation temperature range and coefficient of NTE change obviously in a wide range with decreasing the grain size level of the microstructure. The mechanisms for the broadening of the NTE operation temperature range and the decrease in the absolute value of NTE coefficient were proposed based on the grain-size-dependence of the frustrated magnetic interactions and magnetic ordering. The present study indicates that the NTE properties of the antiperovskite manganese nitrides can be tailored by the control of the microstructure scale. 展开更多
关键词 Negative thermal expansion Antiperovskite manganese nitride Magnetic interaction microstructure scale
原文传递
Effects of cooling rate on microstructure and microhardness of directionally solidified Galvalume alloy 被引量:2
4
作者 Ji-peng Li De-gao Qiao +4 位作者 Jian Li Xiao-yang Luo Peng Peng Xian-tao Yan Xu-dong Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第3期213-220,共8页
The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experim... The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experiments at different withdrawal speeds(5,10,20,50,100,200,and 400μm·s^(-1)).The results show that the microstructure of directionally solidified Galvalume alloys is composed of primary Al dendrites,Si-rich phase and(Zn-Al-Si)ternary eutectics at the withdrawal speed ranging from 5 to 400μm·s^(-1).As the withdrawal speed increases,the segregation of Si element intensifies,resulting in an increase in the area fraction of the Si-rich phase.In addition,the primary Al dendrites show significant refinement with an increase in the withdrawal speed.The relationship between the primary dendrite arm spacing(λ_(1))and the thermal parameters of solidification is obtained:λ_(1)=127.3V^(-0.31).Moreover,as the withdrawal speed increases from 5 to 400μm·s^(-1),the microhardness of the alloy increases from 90 HV to 151 HV.This is a combined effect of grain refinement and second-phase strengthening. 展开更多
关键词 Galvalume alloy directional solidification microstructure length scale MICROHARDNESS
在线阅读 下载PDF
Analysis on phase selection and microstructure evolution in directionally solidified Zn-Al-Mg-Ce alloy 被引量:2
5
作者 Ji-peng Li De-gao Qiao +3 位作者 Shi-wen Dong Peng Peng Xian-tao Yan Xu-dong Zhang 《China Foundry》 SCIE CAS CSCD 2023年第4期347-355,共9页
In the process of hot-dip Zn-Al-Mg alloy coating,the plating solution dissipates heat in the direction perpendicular to the steel plate,which is considered to be a process of directional solidification.To understand t... In the process of hot-dip Zn-Al-Mg alloy coating,the plating solution dissipates heat in the direction perpendicular to the steel plate,which is considered to be a process of directional solidification.To understand the relationship between microstructure and cooling rate of Zn-Al-Mg alloys,both the phase constitution and microstructure characteristic length scales of Zn-9.5Al-3Mg-0.01Ce(wt.%)alloy were investigated by the directional solidification experiments at different growth velocities(V=40,80,160,250μm·s^(-1)).The experimental results show that the microstructure of directionally solidified Zn-9.5Al-3Mg-0.01Ce alloy is composed of primary Al dendrites and(Zn-Al-Mg2Zn11)ternary eutectics at the growth velocities ranging from 40 to 250μm·s^(-1).The primary Al dendrites are aligned regularly along the growth direction,accompanied with obvious secondary dendrites.The relationship between the microstructure length scale and the thermal parameters of solidification is obtained:λ1=374.66V-0.383,andλ2=167.5V-0.563(λ1is the primary dendrite arm spacing,andλ2 is the secondary dendrit arm spacing).In addition,through the interface response function(IRF)and the nucleation and constitutional undercooling(NCU),the phase selection of Zn-9.5Al-3Mg-0.01Ce is obtained:(Zn+Al+Mg2Zn11)ternary eutectics in the Zn-9.5Al-3Mg-0.01Ce alloy will be replaced by ternary eutectics(Zn+Al+MgZn2)when the growth rate is lower than 7.53μm·s^(-1). 展开更多
关键词 Zn-Al-Mg alloy directional solidification microstructure length scale phase selection
在线阅读 下载PDF
Non-isothermal oxidation and ignition prediction of Ti-Cr alloys 被引量:6
6
作者 弭光宝 黄秀松 +3 位作者 李培杰 曹京霞 黄旭 曹春晓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2409-2415,共7页
The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and... The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted. 展开更多
关键词 Ti-Cr alloy non-isothermal oxidation thermogravimetric analysis (TGA) oxide scale microstructure IGNITION
在线阅读 下载PDF
Simulation and experimental study on drag reduction and anti-adhesion of subsoiler with bionic surface 被引量:3
7
作者 Jiping Niu Tongyun Luo +4 位作者 Jiaqing Xie Haoxuan Cai Zhikang Zhou Jun Chen Shuo Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第4期57-64,共8页
A new subsoiler with placoid scale microstructure bionic surface was proposed which mimicked shark skin to reduce tillage resistance and soil adhesion during subsoiling cultivation.The contour curves of placoid scale ... A new subsoiler with placoid scale microstructure bionic surface was proposed which mimicked shark skin to reduce tillage resistance and soil adhesion during subsoiling cultivation.The contour curves of placoid scale microstructure on shark skin were fitted,and two kinds of bionic subsoiler with continuous and discontinuous microstructures were designed and fabricated,respectively.The effects of different bionic surfaces on tillage resistance were investigated by finite element simulation and experiment.The results indicated that the bionic subsoiler with discontinuous microstructure reduced the horizontal and vertical force by 21.3%and 24.8%,respectively.The subsoiler with discontinuous microstructure surface can prevent the adhesion between the soil and subsoiler surface more efficiently. 展开更多
关键词 drag reduction ANTI-ADHESION SUBSOILER bionic surface placoid scale microstructure finite element simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部