In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about samplin...In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can lear...Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model of the environment.In the paper,we propose the sampled-data RL control strategy to reduce the computational demand.In the sampled-data control strategy,the whole control system is of a hybrid structure,in which the plant is of continuous structure while the controller(RL agent)adopts a discrete structure.Given that the continuous states of the plant will be the input of the agent,the state–action value function is approximated by the fully connected feed-forward neural networks(FCFFNN).Instead of learning the controller at every step during the interaction with the environment,the learning and acting stages are decoupled to learn the control strategy more effectively through experience replay.In the acting stage,the most effective experience obtained during the interaction with the environment will be stored and during the learning stage,the stored experience will be replayed to customized times,which helps enhance the experience replay process.The effectiveness of proposed approach will be verified by simulation examples.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is...This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is a stochastic deception attack at the sensor-controller end. The probability of the occurrence of attack on a subsystem is represented using a random variable. A decentralized hybrid sampled-data strategy is introduced to save energy consumption and reduce the transmission load of the network. In the proposed decentralized strategy, each subsystem can decide independently whether its state should be transmitted to the controller or not. The scheme of the hybrid triggering mechanism for each subsystem composed of two stages: In the first stage, the next sampling instant is computed using a self-triggering strategy. Subsequently, in the second stage, an event-triggering condition is checked at these sampling instants and the control signal is computed only if the event-triggering condition is violated. The self-triggering condition used in the first stage is dependent on the selection of eventtriggering condition of the second stage. Finally, a comparison of the proposed approach with other triggering mechanisms existing in the literature is presented in terms of the sampling instants,transmission frequency and performance measures through simulation examples.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP sh...A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.展开更多
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopte...This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.展开更多
For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i....For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i.i.d.) process. With this process, the closed-loop system is transformed into an asynchronous dynamical impulsive model with input delays. Sufficient conditions for the closed-loop mean-square exponential stability are presented in terms of linear matrix inequalities (LMIs), in which the relation between the nonuniform sampling and the mean-square exponential stability of the closed-loop system is explicitly established. Based on the stability conditions, the controller design method is given, which is further formulated as a convex optimization problem with LMI constraints. Numerical examples and experiment results are given to show the effectiveness and the advantages of the theoretical results.展开更多
The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and desig...The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and design methods are discussed in detail. Finally, some remarks, expectations and conclusions on the present research status and the research directions are given.展开更多
This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder ma...This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.展开更多
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for ...Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for online fuel reprocessing.However,the fuel-salt flow results in the decay of delayed neutron precursors(DNPs)outside the core,causing fluctuations in the effective delayed neutron fraction and consequently impacting the reactor reactivity.Particularly in accident scenarios—such as a combined pump shutdown and the inability to rapidly scram the reactor—the sole reliance on negative temperature feedback may cause a significant increase in core temperature,posing a threat to reactor safety.To address these problems,this paper introduces an innovative design for a passive fluid-driven suspended control rod(SCR)to dynamically compensate for reactivity fluctuations caused by DNPs flowing with the fuel.The control rod operates passively by leveraging the combined effects of gravity,buoyancy,and fluid dynamic forces,thereby eliminating the need for an external drive mechanism and enabling direct integration within the active region of the core.Using a 150 MWt thorium-based molten salt reactor as the reference design,we develop a mathematical model to systematically analyze the effects of key parameters—including the geometric dimensions and density of the SCR—on its performance.We examine its motion characteristics under different core flow conditions and assess its feasibility for the dynamic compensation of reactivity changes caused by fuel flow.The results of this study demonstrate that the SCR can effectively counteract reactivity fluctuations induced by fuel flow within molten salt reactors.A sensitivity analysis reveals that the SCR’s average density exerts a profound impact on its start-up flow threshold,channel flow rate,resistance to fuel density fluctuations,and response characteristics.This underscores the critical need to optimize this parameter.Moreover,by judiciously selecting the SCR’s length,number of deployed units,and the placement we can achieve the necessary reactivity control while maintaining a favorable balance between neutron economy and heat transfer performance.Ultimately,this paper provides an innovative solution for the passive reactivity control in molten salt reactors,offering significant potential for practical engineering applications.展开更多
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia...Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.展开更多
Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressi...Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressing these shortcomings,thiswork presents a robust 15-level PackedUCell(PUC)inverter topology designed for renewable energy and grid-connected applications.The proposed systemintegrates a sensor less proportional-resonant(PR)controller with an advanced carrier-based pulse width modulation scheme.This approach efficiently balances capacitor voltage,minimizes steady-state error,and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation.Additionally,a novel switching algorithm simplifies the design and implementation,further lowering voltage stress across switches.Extensive simulation results validate the performance under various resistive and resistive-inductive load conditions,demonstrating compliance with IEEE-519 THD standards and robust operation under dynamic changes.The proposed sensorless PR-controlled 15-PUC inverter thus offers a compelling,cost-effective solution for efficient power conversion in next-generation renewable energy systems.展开更多
To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance dat...To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance data-driven event-triggered fusion control method,which achieves efficient fault diagnosis while suppressing random disturbances and mitigating communication conflicts within the QUAV swarm.First,the impact of random disturbances on the UAV swarm is analyzed,and a model for orientation and attitude control of QUAVs under stochastic perturbations is established,with the disturbance gain threshold determined.Second,a fault diagnosis system based on a high-gain observer is designed,constructing a fault gain criterion by integrating orientation and attitude information from QUAVs.Subsequently,a model-free dynamic linearization-based data modeling(MFDLDM)framework is developed using model-free adaptive control,which efficiently fits the nonlinear control model of the QUAV swarm while reducing temporal constraints on control data.On this basis,this paper constructs a distributed data-driven event-triggered controller based on the staggered communication mechanism,which consists of an equivalent QUAV controller and an event-triggered controller,and is able to reduce the communication conflicts while suppressing the influence of random interference.Finally,by incorporating random disturbances into the controller,comparative experiments and physical validations are conducted on the QUAV platforms,fully demonstrating the strong adaptability and robustness of the proposed distributed event-triggered fault-tolerant control system.展开更多
Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)...Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.展开更多
Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-me...Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-ments in karst hydrology,significant gaps remain in long-term trends,underlying processes,and quantitative effects of environmental changes.This is especially true in areas like the Wujiang River(WJ)in China,where human activities such as reservoir construction and land use/cover changes have accelerated hydrochemical changes.We combined recent and historical monitoring data to provide a detailed analysis of the spatial and temporal characteristics,evolution,and controlling factors of major ions in WJ.These findings are important for local water management and contribute to global efforts to manage similar karst systems facing human-induced pressures.Our research shows clear seasonal differences in solute concentrations,with higher levels during the dry season.WJ’s water is rich in calcium,with Ca-HCO_(3) ion pairs being the most common.Reservoir monitor-ing stations show much higher levels of NO_(3)^(−)and SO_(4)^(2−)compared to river-type stations,likely due to longer hydraulic retention time and increased acid deposition.The study confirms the significant role of pH and water temperature in rock weathering processes.Land use/cover changes were identified as the primary drivers of solute variations(46.37%),followed by lithology(13.92%)and temperature(8.35%).Over the past two decades,in-tense carbonate weathering has been observed,especially during wet seasons.Among karstic provinces,Guizhou Province stands out with the highest ion concentrations,indicative of its extensive karst coverage and heightened weathering processes.展开更多
In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)d...In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition.展开更多
文摘In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
基金supported by Imperial College London,UK,King’s College London,UK and Engineering and Physical Sciences Research Council(EPSRC),UK.
文摘Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model of the environment.In the paper,we propose the sampled-data RL control strategy to reduce the computational demand.In the sampled-data control strategy,the whole control system is of a hybrid structure,in which the plant is of continuous structure while the controller(RL agent)adopts a discrete structure.Given that the continuous states of the plant will be the input of the agent,the state–action value function is approximated by the fully connected feed-forward neural networks(FCFFNN).Instead of learning the controller at every step during the interaction with the environment,the learning and acting stages are decoupled to learn the control strategy more effectively through experience replay.In the acting stage,the most effective experience obtained during the interaction with the environment will be stored and during the learning stage,the stored experience will be replayed to customized times,which helps enhance the experience replay process.The effectiveness of proposed approach will be verified by simulation examples.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
文摘This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is a stochastic deception attack at the sensor-controller end. The probability of the occurrence of attack on a subsystem is represented using a random variable. A decentralized hybrid sampled-data strategy is introduced to save energy consumption and reduce the transmission load of the network. In the proposed decentralized strategy, each subsystem can decide independently whether its state should be transmitted to the controller or not. The scheme of the hybrid triggering mechanism for each subsystem composed of two stages: In the first stage, the next sampling instant is computed using a self-triggering strategy. Subsequently, in the second stage, an event-triggering condition is checked at these sampling instants and the control signal is computed only if the event-triggering condition is violated. The self-triggering condition used in the first stage is dependent on the selection of eventtriggering condition of the second stage. Finally, a comparison of the proposed approach with other triggering mechanisms existing in the literature is presented in terms of the sampling instants,transmission frequency and performance measures through simulation examples.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
基金the National Natural Science Foundation of China(No.51579114)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)the Project of Young and Middle-Aged Teacher Education of Fujian Province(No.JAT170309)
文摘A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.
基金Project supported by the National Natural Science Foundation of China(Grant No.61304064)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.15B067 and 16C0475)a Discovering Grant from Australian Research Council
文摘This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
基金supported by National Natural Science Foundation of China (Nos.61104105,U0735003 and 60974047)Natural Science Foundation of Guangdong Province of China (No.9451009001002702)
文摘For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i.i.d.) process. With this process, the closed-loop system is transformed into an asynchronous dynamical impulsive model with input delays. Sufficient conditions for the closed-loop mean-square exponential stability are presented in terms of linear matrix inequalities (LMIs), in which the relation between the nonuniform sampling and the mean-square exponential stability of the closed-loop system is explicitly established. Based on the stability conditions, the controller design method is given, which is further formulated as a convex optimization problem with LMI constraints. Numerical examples and experiment results are given to show the effectiveness and the advantages of the theoretical results.
文摘The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and design methods are discussed in detail. Finally, some remarks, expectations and conclusions on the present research status and the research directions are given.
基金supported by the Autonomous Innovation Team Foundation for“20 Items of the New University”of Jinan City(202228087)the National Natural Science Foundation of China(62073190).
文摘This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020261)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA02010000)the Young Potential Program of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.SINAP-YXJH-202412).
文摘Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for online fuel reprocessing.However,the fuel-salt flow results in the decay of delayed neutron precursors(DNPs)outside the core,causing fluctuations in the effective delayed neutron fraction and consequently impacting the reactor reactivity.Particularly in accident scenarios—such as a combined pump shutdown and the inability to rapidly scram the reactor—the sole reliance on negative temperature feedback may cause a significant increase in core temperature,posing a threat to reactor safety.To address these problems,this paper introduces an innovative design for a passive fluid-driven suspended control rod(SCR)to dynamically compensate for reactivity fluctuations caused by DNPs flowing with the fuel.The control rod operates passively by leveraging the combined effects of gravity,buoyancy,and fluid dynamic forces,thereby eliminating the need for an external drive mechanism and enabling direct integration within the active region of the core.Using a 150 MWt thorium-based molten salt reactor as the reference design,we develop a mathematical model to systematically analyze the effects of key parameters—including the geometric dimensions and density of the SCR—on its performance.We examine its motion characteristics under different core flow conditions and assess its feasibility for the dynamic compensation of reactivity changes caused by fuel flow.The results of this study demonstrate that the SCR can effectively counteract reactivity fluctuations induced by fuel flow within molten salt reactors.A sensitivity analysis reveals that the SCR’s average density exerts a profound impact on its start-up flow threshold,channel flow rate,resistance to fuel density fluctuations,and response characteristics.This underscores the critical need to optimize this parameter.Moreover,by judiciously selecting the SCR’s length,number of deployed units,and the placement we can achieve the necessary reactivity control while maintaining a favorable balance between neutron economy and heat transfer performance.Ultimately,this paper provides an innovative solution for the passive reactivity control in molten salt reactors,offering significant potential for practical engineering applications.
基金the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-3623-11”.
文摘Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.
文摘Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressing these shortcomings,thiswork presents a robust 15-level PackedUCell(PUC)inverter topology designed for renewable energy and grid-connected applications.The proposed systemintegrates a sensor less proportional-resonant(PR)controller with an advanced carrier-based pulse width modulation scheme.This approach efficiently balances capacitor voltage,minimizes steady-state error,and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation.Additionally,a novel switching algorithm simplifies the design and implementation,further lowering voltage stress across switches.Extensive simulation results validate the performance under various resistive and resistive-inductive load conditions,demonstrating compliance with IEEE-519 THD standards and robust operation under dynamic changes.The proposed sensorless PR-controlled 15-PUC inverter thus offers a compelling,cost-effective solution for efficient power conversion in next-generation renewable energy systems.
基金supported in part by the National Natural Science Foundation of China,Grant/Award Number:62003267the Key Research and Development Program of Shaanxi Province,Grant/Award Number:2023-GHZD-33Open Project of the State Key Laboratory of Intelligent Game,Grant/Award Number:ZBKF-23-05。
文摘To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance data-driven event-triggered fusion control method,which achieves efficient fault diagnosis while suppressing random disturbances and mitigating communication conflicts within the QUAV swarm.First,the impact of random disturbances on the UAV swarm is analyzed,and a model for orientation and attitude control of QUAVs under stochastic perturbations is established,with the disturbance gain threshold determined.Second,a fault diagnosis system based on a high-gain observer is designed,constructing a fault gain criterion by integrating orientation and attitude information from QUAVs.Subsequently,a model-free dynamic linearization-based data modeling(MFDLDM)framework is developed using model-free adaptive control,which efficiently fits the nonlinear control model of the QUAV swarm while reducing temporal constraints on control data.On this basis,this paper constructs a distributed data-driven event-triggered controller based on the staggered communication mechanism,which consists of an equivalent QUAV controller and an event-triggered controller,and is able to reduce the communication conflicts while suppressing the influence of random interference.Finally,by incorporating random disturbances into the controller,comparative experiments and physical validations are conducted on the QUAV platforms,fully demonstrating the strong adaptability and robustness of the proposed distributed event-triggered fault-tolerant control system.
文摘Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.
基金supported by Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515110824 and 2025A1515011839)Shenzhen Science and Technology Program(No.RCBS20231211090638066).
文摘Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-ments in karst hydrology,significant gaps remain in long-term trends,underlying processes,and quantitative effects of environmental changes.This is especially true in areas like the Wujiang River(WJ)in China,where human activities such as reservoir construction and land use/cover changes have accelerated hydrochemical changes.We combined recent and historical monitoring data to provide a detailed analysis of the spatial and temporal characteristics,evolution,and controlling factors of major ions in WJ.These findings are important for local water management and contribute to global efforts to manage similar karst systems facing human-induced pressures.Our research shows clear seasonal differences in solute concentrations,with higher levels during the dry season.WJ’s water is rich in calcium,with Ca-HCO_(3) ion pairs being the most common.Reservoir monitor-ing stations show much higher levels of NO_(3)^(−)and SO_(4)^(2−)compared to river-type stations,likely due to longer hydraulic retention time and increased acid deposition.The study confirms the significant role of pH and water temperature in rock weathering processes.Land use/cover changes were identified as the primary drivers of solute variations(46.37%),followed by lithology(13.92%)and temperature(8.35%).Over the past two decades,in-tense carbonate weathering has been observed,especially during wet seasons.Among karstic provinces,Guizhou Province stands out with the highest ion concentrations,indicative of its extensive karst coverage and heightened weathering processes.
基金funded by State Grid Corporation of China Central Branch Technology Project(52140024000C).
文摘In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition.