The unifiedΩ-series of the Gauss and Bailey2F1(1/2)-sums will be investigated by utilizing asymptotic methods and the modified Abel lemma on summation by parts.Several remarkable transformation theorems for theΩ-ser...The unifiedΩ-series of the Gauss and Bailey2F1(1/2)-sums will be investigated by utilizing asymptotic methods and the modified Abel lemma on summation by parts.Several remarkable transformation theorems for theΩ-series will be proved whose particular cases turn out to be strange evaluations of nonterminating hypergeometric series and infinite series identities of Ramanujan-type,including a couple of beautiful expressions forπand the Catalan constant discovered by Guillera(2008).展开更多
The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each o...The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each of the polynomials and certain hypergeometric functions, which leads to a simple expression for a polynomial in a special case. Contour integral representations of the polynomials are given. By using of the saddle point method the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also discussed.展开更多
文摘The unifiedΩ-series of the Gauss and Bailey2F1(1/2)-sums will be investigated by utilizing asymptotic methods and the modified Abel lemma on summation by parts.Several remarkable transformation theorems for theΩ-series will be proved whose particular cases turn out to be strange evaluations of nonterminating hypergeometric series and infinite series identities of Ramanujan-type,including a couple of beautiful expressions forπand the Catalan constant discovered by Guillera(2008).
文摘The polynomials related with cubic Hermite-Padé approximation to the exponential function are investigated which have degrees at most n, m, s respectively. A connection is given between the coefficients of each of the polynomials and certain hypergeometric functions, which leads to a simple expression for a polynomial in a special case. Contour integral representations of the polynomials are given. By using of the saddle point method the exact asymptotics of the polynomials are derived as n, m, s tend to infinity through certain ray sequence. Some further uniform asymptotic aspects of the polynomials are also discussed.