Advancements in artificial intelligence and big data technologies have led to the gradual emergence of intelligent ships,which are expected to dominate the future of maritime transportation.Supporting the navigation o...Advancements in artificial intelligence and big data technologies have led to the gradual emergence of intelligent ships,which are expected to dominate the future of maritime transportation.Supporting the navigation of intelligent ships,route planning technologies have developed many route planning algorithms that prioritize economy and safety.This paper conducts an in-depth study of algorithm efficiency for a route planning problem,proposing an intelligent ship route planning algorithm based on the adaptive step size Informed-RRT^(*).This algorithm can quickly plan a short route according to automatic obstacle avoidance and is suitable for planning the routes of intelligent ships.Results show that the adaptive step size Informed-RRT^(*) algorithm can shorten the optimal route length by approximately 13.05%while ensuring the running time of the planning algorithm and avoiding approximately 23.64%of redundant sampling nodes.The improved algorithm effectively circumvents unnecessary calculations and reduces a large amount of redundant sampling data,thus improving the efficiency of route planning.In a complex water environment,the unique adaptive step size mechanism enables this algorithm to prevent restricted search tree expansion,showing strong search ability and robustness,which is of practical significance for the development of intelligent ships.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
Satellite networks have many advantages over traditional terrestrial networks.However,it is very difficult to design a satellite network with excellent performance.The paper briefly summarizes some existing satellite ...Satellite networks have many advantages over traditional terrestrial networks.However,it is very difficult to design a satellite network with excellent performance.The paper briefly summarizes some existing satellite network routing technologies from the perspective of both single-layer and multilayer satellite constellations,and focuses on the main ideas,characteristics,and existing problems of these routing technologies.For single-layer satellite networks,two routing strategies are discussed,virtual node strategy and virtual topology strategy.Moreover,considering the deficiency of existing multilayer satellite network routing,we discuss the topic invulnerability.Finally,the challenges and problems faced by the satellite network are analyzed and the trend of future development is predicted.展开更多
A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstr...A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings.展开更多
文摘Advancements in artificial intelligence and big data technologies have led to the gradual emergence of intelligent ships,which are expected to dominate the future of maritime transportation.Supporting the navigation of intelligent ships,route planning technologies have developed many route planning algorithms that prioritize economy and safety.This paper conducts an in-depth study of algorithm efficiency for a route planning problem,proposing an intelligent ship route planning algorithm based on the adaptive step size Informed-RRT^(*).This algorithm can quickly plan a short route according to automatic obstacle avoidance and is suitable for planning the routes of intelligent ships.Results show that the adaptive step size Informed-RRT^(*) algorithm can shorten the optimal route length by approximately 13.05%while ensuring the running time of the planning algorithm and avoiding approximately 23.64%of redundant sampling nodes.The improved algorithm effectively circumvents unnecessary calculations and reduces a large amount of redundant sampling data,thus improving the efficiency of route planning.In a complex water environment,the unique adaptive step size mechanism enables this algorithm to prevent restricted search tree expansion,showing strong search ability and robustness,which is of practical significance for the development of intelligent ships.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金This work is supported by the National Natural Science Foundation of China(Nos.61572435,61472305,61473222)the Natural Science Foundation of Shaanxi Province(Nos.2015JZ002,2015JM6311)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LZ16F020001)Programs Supported by Ningbo Natural Science Foundation(No.2016A610035).
文摘Satellite networks have many advantages over traditional terrestrial networks.However,it is very difficult to design a satellite network with excellent performance.The paper briefly summarizes some existing satellite network routing technologies from the perspective of both single-layer and multilayer satellite constellations,and focuses on the main ideas,characteristics,and existing problems of these routing technologies.For single-layer satellite networks,two routing strategies are discussed,virtual node strategy and virtual topology strategy.Moreover,considering the deficiency of existing multilayer satellite network routing,we discuss the topic invulnerability.Finally,the challenges and problems faced by the satellite network are analyzed and the trend of future development is predicted.
文摘A WDM compatible Edge-to-Edge Self-Routed optical packet switched network that simplifies the optical processing is proposed. The system employs all-optical packet label generation and recognition using coded superstructured Fiber Bragg gratings.