LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional...LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.展开更多
This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω i...This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.展开更多
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC...Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have e...Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road...Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.展开更多
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis...As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.展开更多
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ...The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.展开更多
Transcription factors play critical roles in the regulation of gene expression during maize kernel development.The maize endosperm,a large storage organ,accounting for nearly 90%of the dry weight of mature kernels,ser...Transcription factors play critical roles in the regulation of gene expression during maize kernel development.The maize endosperm,a large storage organ,accounting for nearly 90%of the dry weight of mature kernels,serves as the primary site for starch storage.In this study,we identify an endosperm-specific EREB gene,ZmEREB167,which encodes a nucleus-localized EREB protein.Knockout of ZmEREB167 significantly increases kernel size and weight,as well as starch and protein content,compared with the wild type.In situ hybridization experiments show that ZmEREB167 is highly expressed in the BETL as well as PED regions of maize kernels.Dual-luciferase assays show that ZmEREB167 exhibits transcriptionally repressor activity in maize protoplasts.Transcriptome analysis reveals that a large number of genes are up-regulated in the Zmereb167-C1 mutant compared with the wild type,including key genetic factors such as ZmMRP-1 and ZmMN1,as well as multiple transporters involved in maize endosperm development.Integration of RNA-seq and ChIP-seq results identify 68 target genes modulated by ZmEREB167.We find that ZmEREB167 directly targets OPAQUE2,ZmNRT1.1,ZmIAA12,ZmIAA19,and ZmbZIP20,repressing their expressions.Our study demonstrates that ZmEREB167 functions as a negative regulator in maize endosperm development and affects starch accumulation and kernel size.展开更多
Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughne...Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughness and its influencing factors is analyzed.Experiments on the hemispherical dome shaping process are conducted to validate the model,analyzing the variation in roughness under different tool and workpiece rotational speeds.The results are consistent with the predictions of the established roughness model,suggesting that the model can be used to guide subsequent process experiments.Milling and shaping efficiency using brazed diamond tools typically can reach 14 g/min.The machined sapphire surfaces exhibit relatively few microcracks and minimal damage,with almost all exclusively visible grooves resulting from brittle fracture removal.The surface roughness after machining is below 2.5μm.Milling sapphire domes with brazed diamond tools represents a novel shaping technique characterized by high efficiency and high quality.展开更多
We present and explore a new shock-capturing particle hydrodynamics approach.Our starting point is a commonly used discretization of smoothed particle hydrodynamics.We enhance this discretization with Roe’s approx-im...We present and explore a new shock-capturing particle hydrodynamics approach.Our starting point is a commonly used discretization of smoothed particle hydrodynamics.We enhance this discretization with Roe’s approx-imate Riemann solver,we identify its dissipative terms,and in these terms,we use slope-limited linear reconstruction.All gradients needed for our method are calculated with linearly reproducing kernels that are constructed to enforce the two lowest-order consistency relations.We scrutinize our reproducing kernel implementation carefully on a“glass-like”particle distribution,and we find that constant and linear functions are recovered to machine precision.We probe our method in a series of challenging 3D benchmark problems ranging from shocks over instabilities to Schulz-Rinne-type vorticity-creating shocks.All of our simulations show excellent agreement with analytic/reference solutions.展开更多
Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a sub...Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials.展开更多
The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(seco...The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(second-order)from four granite joint surfaces,with roughness characterized using Grasselli’s 3D morphology parameters.The results reveal that first-order roughness is more pronounced than second-order roughness,highlighting the dominant role of waviness in joint surface roughness.Additionally,the variation in first-order roughness with strike direction corresponds to the total roughness,while second-order roughness remains largely constant,indicating that roughness anisotropy is primarily driven by waviness.Then,direct shear tests on joint replicas are performed to investigate the contributions of both roughness orders to peak shear strength.The results show that the peak dilation angle is closely related to first-order roughness,while the shear component angle is closely associated with second-order roughness,both exhibiting a linear correlation.Based on these findings,relationships are established between the angles and their respective roughness orders.Finally,a joint shear strength criterion based on two-order roughness is proposed.A comparative analysis of prediction accuracy reveals that the average relative error for the proposed criterion is 13.79%,while the errors for Xia's,Yang's,and Ban's criteria are 15.19%,16.29%,and 13.87%,respectively.It demonstrates the proposed criterion can predict the peak shear strength of rock joints.展开更多
Arogenate dehydratase(ADT)catalyzes the final step in phenylalanine synthesis and is crucial for plant development and metabolism.Previously,we demonstrated that the ADT/prephenate dehydratase ZmADT2 is essential for ...Arogenate dehydratase(ADT)catalyzes the final step in phenylalanine synthesis and is crucial for plant development and metabolism.Previously,we demonstrated that the ADT/prephenate dehydratase ZmADT2 is essential for maize resistance to Ustilago maydis and for overall plant development.In this study,we explored the role of ZmADT2 in maize kernel development.The mmsu mutant,a dysfunctional ZmADT2 variant,exhibits delayed embryo and endosperm development,along with deficiencies in carbohydrate and protein storage.Transcriptome analysis revealed differential expression of many kernel compartment-specific genes between mmsu and wild-type(WT)kernels,with impaired nutrient accumulation and auxin signaling pathway in the mmsu endosperm.Compared to WT,ZmADT2 mutation led to reduced auxin levels and smaller endosperm cell size.Exogenous auxin rescued the small kernel phenotype of mmsu.Additionally,auxin distribution was reduced in the basal endosperm transfer layer(BETL),causing defects in its development and function,including reduced transfer cell elongation,cell wall ingrowth and nutrient uptake.These findings suggest that ZmADT2 mediated mediates an auxin signaling pathway that is essential for maize kernel development.展开更多
Owing to process conditions such as uneven clearance of base metal assembly and welding deformation,it is difficult to obtain well-formed structural welds with robot constant specification parameters welding.Determini...Owing to process conditions such as uneven clearance of base metal assembly and welding deformation,it is difficult to obtain well-formed structural welds with robot constant specification parameters welding.Determining how to extract a structured,anti-interference,concise,and dynamic knowledge model from measurable data,and then adjust the welding parameters with corresponding control methods in real time is a central problem to be solved in welding formation control.Hence,this paper proposes a welding penetration control method based on a Neighborhood Rough Set-Adaptive Neuro-Fuzzy Inference System(NRS-ANFIS)to achieve effective penetration control for the GMAW welding process.In orthogonal experiments,the NRS algorithm,which is based on visual sensing to obtain the properties of the weld pool and gap changes,is used to reduce the established frontal weld pool feature information decision table,and the minimum feature set of the weld pool tail width WTand the tail area coefficient CTSis obtained.The minimum feature set of the effective frontal weld pool,real-time line laser distance change,and real-time current information are used as the input for the ANFIS control system.The experimental results for the two groups of time-varying gaps demonstrate that under the condition of no preheating of the base metal,the complete welding penetration rate of the adjusted welding process parameters output by the trained ANFIS model reaches 87%,and the backside melting width is uniform and consistent,which meets the welding specification requirements.展开更多
In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To addr...In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.展开更多
Palm kernel cake(PKC),a major by-product of the palm oil industry,is rich in non-starch polysaccharides.In this study,two polysaccharide fractions,precipitated with acetic acid(PPA)and ethanol(PPE),respectively,were e...Palm kernel cake(PKC),a major by-product of the palm oil industry,is rich in non-starch polysaccharides.In this study,two polysaccharide fractions,precipitated with acetic acid(PPA)and ethanol(PPE),respectively,were extracted from PKC using a 2 mol/L NaOH solution.The molecular weight,sugar composition,structural characteristics,morphology,antioxidant activity,as well as in vitro stimulated digestion were investigated in detail.The results revealed that due to its poor solubility of PPA in water,the detected molecular weight of PPA was only 2040 g/mol,which was significantly lower than that of PPE(65,300 g/mol).Although PPA and PPE had a similar sugar composition with varying contents,mannose was the predominant monosaccharide in both,accounting for 87.71%and 60.40%,respectively.Both PPA and PPE were primarily composed of crystalline mannan,consisting of mannopyranosyl units linked by(1→4)-β-glycosidic bonds,along with a small amount of lignin.PPA possibly contained a higher proportion of crystalline mannan,whereas PPE had a larger amount of arabinoxylan and galactomannan.Atomic force microscope revealed a stacked morphology for both PPA and PPE.PPA exhibited a higher scavenging rate against DPPH•and ABTS^(+)•but a weaker HO•scavenging activity and reducing power compared with PPE.Within the polysaccharide concentration range of 0.5-5.0 mg/mL,PPA and PPB demonstrated the strongest scavenging activity against ABTS^(+)•,with the highest scavenging rates exceeding 91%.However,PPA and PPB exhibited the weakest scavenging activity against HO•,with their highest HO•scavenging rates reaching only 44.91%and 55.86%,respectively.The antioxidant activities of both PPA and PPE were weaker than that of ascorbic acid.PPA remained almost stable in the in vitro simulated saliva fluid,while PPE exhibited weaker resistance to it.Both PPA and PPE exhibited weak resistance to the in vitro simulated gastric digestion fluids,but remained relatively stable in the in vitro simulated small-intestinal digestion fluid.The differences in physicochemical properties between PPA and PPE likely played an important role in their distinct biological activities.These findings suggest potential utilization of PKC in exploring dietary polysaccharides with favorable antioxidant activity and unique digestive characteristics.展开更多
Mitochondria are semi-autonomous organelles present in eukaryotic cells,containing their own genome and transcriptional machinery.However,their functions are intricately linked to proteins encoded by the nuclear genom...Mitochondria are semi-autonomous organelles present in eukaryotic cells,containing their own genome and transcriptional machinery.However,their functions are intricately linked to proteins encoded by the nuclear genome.Mitochondrial transcription termination factors(mTERFs)are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.Despite their recognized importance,the specific roles of mTERF proteins in maize remain largely unexplored.Here,we clone and functionally characterize the maize mTERF18 gene.Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos,resulting in abortive phenotypes.Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18.We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests.mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein.Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene,leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity.Furthermore,transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects.Collectively,these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.展开更多
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads...In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.展开更多
文摘LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained.
文摘This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.
基金funding from the National Natural Science Foundation of China (Grant No.42277175)the pilot project of cooperation between the Ministry of Natural Resources and Hunan Province“Research and demonstration of key technologies for comprehensive remote sensing identification of geological hazards in typical regions of Hunan Province” (Grant No.2023ZRBSHZ056)the National Key Research and Development Program of China-2023 Key Special Project (Grant No.2023YFC2907400).
文摘Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
文摘Significant advancements have been achieved in the field of Single Image Super-Resolution(SISR)through the utilization of Convolutional Neural Networks(CNNs)to attain state-of-the-art performance.Recent efforts have explored the incorporation of Transformers to augment network performance in SISR.However,the high computational cost of Transformers makes them less suitable for deployment on lightweight devices.Moreover,the majority of enhancements for CNNs rely predominantly on small spatial convolutions,thereby neglecting the potential advantages of large kernel convolution.In this paper,the authors propose a Multi-Perception Large Kernel convNet(MPLKN)which delves into the exploration of large kernel convolution.Specifically,the authors have architected a Multi-Perception Large Kernel(MPLK)module aimed at extracting multi-scale features and employ a stepwise feature fusion strategy to seamlessly integrate these features.In addition,to enhance the network's capacity for nonlinear spatial information processing,the authors have designed a Spatial-Channel Gated Feed-forward Network(SCGFN)that is capable of adapting to feature interactions across both spatial and channel dimensions.Experimental results demonstrate that MPLKN outperforms other lightweight image super-resolution models while maintaining a minimal number of parameters and FLOPs.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
文摘Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs.
基金College Students Innovation and Entrepreneurship Project of Guangzhou Railway Polytechnic(2025CXCY015)。
文摘As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.
基金supported by the National Natural Science Foundation of China under Grant No.12072090.
文摘The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.
基金supported by STI 2030-Major Project(2023ZD04069)National Key Research and Development Program of China(2023YFD1202900)+3 种基金The National Science Fund for Distinguished Young Scholars(32425041)The“Breakthrough”Science and Technology Project of Tongliao(TL2024TW001)Science and Technology Demonstration Project of Shandong Province(2024SFGC0402)Pinduoduo-China Agricultural University Research Fund(PC2023A01004).
文摘Transcription factors play critical roles in the regulation of gene expression during maize kernel development.The maize endosperm,a large storage organ,accounting for nearly 90%of the dry weight of mature kernels,serves as the primary site for starch storage.In this study,we identify an endosperm-specific EREB gene,ZmEREB167,which encodes a nucleus-localized EREB protein.Knockout of ZmEREB167 significantly increases kernel size and weight,as well as starch and protein content,compared with the wild type.In situ hybridization experiments show that ZmEREB167 is highly expressed in the BETL as well as PED regions of maize kernels.Dual-luciferase assays show that ZmEREB167 exhibits transcriptionally repressor activity in maize protoplasts.Transcriptome analysis reveals that a large number of genes are up-regulated in the Zmereb167-C1 mutant compared with the wild type,including key genetic factors such as ZmMRP-1 and ZmMN1,as well as multiple transporters involved in maize endosperm development.Integration of RNA-seq and ChIP-seq results identify 68 target genes modulated by ZmEREB167.We find that ZmEREB167 directly targets OPAQUE2,ZmNRT1.1,ZmIAA12,ZmIAA19,and ZmbZIP20,repressing their expressions.Our study demonstrates that ZmEREB167 functions as a negative regulator in maize endosperm development and affects starch accumulation and kernel size.
基金supported by the Na-tional Natural Science Foundation of China(No.51675457)the Jiangsu Key Laboratory of Precision and Micro-man-ufacturing Technology.
文摘Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughness and its influencing factors is analyzed.Experiments on the hemispherical dome shaping process are conducted to validate the model,analyzing the variation in roughness under different tool and workpiece rotational speeds.The results are consistent with the predictions of the established roughness model,suggesting that the model can be used to guide subsequent process experiments.Milling and shaping efficiency using brazed diamond tools typically can reach 14 g/min.The machined sapphire surfaces exhibit relatively few microcracks and minimal damage,with almost all exclusively visible grooves resulting from brittle fracture removal.The surface roughness after machining is below 2.5μm.Milling sapphire domes with brazed diamond tools represents a novel shaping technique characterized by high efficiency and high quality.
基金supported by the Swedish Research Council(VR)under grant number 2020-05044by the research environment grant"Gravitational Radiation and Electromagnetic Astrophysical Transients"(GREAT)funded by the Swedish Research Council(VR)under Dnr 2016-06012+2 种基金by the Knut and Alice Wallenberg Foundation under grant Dnr.KAW 2019.0112by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany's Excellence Strategy-EXC 2121"Quantum Universe"-390833306by the European Research Council(ERC)Advanced Grant INSPIRATION under the European Union's Horizon 2020 Research and Innovation Programme(Grant agreement No.101053985).
文摘We present and explore a new shock-capturing particle hydrodynamics approach.Our starting point is a commonly used discretization of smoothed particle hydrodynamics.We enhance this discretization with Roe’s approx-imate Riemann solver,we identify its dissipative terms,and in these terms,we use slope-limited linear reconstruction.All gradients needed for our method are calculated with linearly reproducing kernels that are constructed to enforce the two lowest-order consistency relations.We scrutinize our reproducing kernel implementation carefully on a“glass-like”particle distribution,and we find that constant and linear functions are recovered to machine precision.We probe our method in a series of challenging 3D benchmark problems ranging from shocks over instabilities to Schulz-Rinne-type vorticity-creating shocks.All of our simulations show excellent agreement with analytic/reference solutions.
基金supported by H2020-MSCA-RISE-778104–ThermaSMART,Royal Society(IEC\NSFC\211210)doctoral degree scholarship of China Scholarship Council(CSC).
文摘Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials.
基金funded by the National Natural Science Foundation of China (Grant nos. 42272333 and 42377154)the China Association for Science and Technology Youth Talent Support Program for PhD Students.
文摘The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(second-order)from four granite joint surfaces,with roughness characterized using Grasselli’s 3D morphology parameters.The results reveal that first-order roughness is more pronounced than second-order roughness,highlighting the dominant role of waviness in joint surface roughness.Additionally,the variation in first-order roughness with strike direction corresponds to the total roughness,while second-order roughness remains largely constant,indicating that roughness anisotropy is primarily driven by waviness.Then,direct shear tests on joint replicas are performed to investigate the contributions of both roughness orders to peak shear strength.The results show that the peak dilation angle is closely related to first-order roughness,while the shear component angle is closely associated with second-order roughness,both exhibiting a linear correlation.Based on these findings,relationships are established between the angles and their respective roughness orders.Finally,a joint shear strength criterion based on two-order roughness is proposed.A comparative analysis of prediction accuracy reveals that the average relative error for the proposed criterion is 13.79%,while the errors for Xia's,Yang's,and Ban's criteria are 15.19%,16.29%,and 13.87%,respectively.It demonstrates the proposed criterion can predict the peak shear strength of rock joints.
基金funded by the National Natural Science Foundation of China(32071921)Key R&D Program of Shandong Province,China(2021LZGC022)Taishan Scholars Project(ts201712024).
文摘Arogenate dehydratase(ADT)catalyzes the final step in phenylalanine synthesis and is crucial for plant development and metabolism.Previously,we demonstrated that the ADT/prephenate dehydratase ZmADT2 is essential for maize resistance to Ustilago maydis and for overall plant development.In this study,we explored the role of ZmADT2 in maize kernel development.The mmsu mutant,a dysfunctional ZmADT2 variant,exhibits delayed embryo and endosperm development,along with deficiencies in carbohydrate and protein storage.Transcriptome analysis revealed differential expression of many kernel compartment-specific genes between mmsu and wild-type(WT)kernels,with impaired nutrient accumulation and auxin signaling pathway in the mmsu endosperm.Compared to WT,ZmADT2 mutation led to reduced auxin levels and smaller endosperm cell size.Exogenous auxin rescued the small kernel phenotype of mmsu.Additionally,auxin distribution was reduced in the basal endosperm transfer layer(BETL),causing defects in its development and function,including reduced transfer cell elongation,cell wall ingrowth and nutrient uptake.These findings suggest that ZmADT2 mediated mediates an auxin signaling pathway that is essential for maize kernel development.
基金Supported by National Natural Science Foundation of China(Grant Nos.52261044,51969001)the Guangxi Provincial Science and Technology Major Project(Grant No.Guike AA23062037)Research Foundation Ability Enhancement Project for Young and Middle Aged Teachers in Guangxi Universities of China(Grant No.2024KY0441)。
文摘Owing to process conditions such as uneven clearance of base metal assembly and welding deformation,it is difficult to obtain well-formed structural welds with robot constant specification parameters welding.Determining how to extract a structured,anti-interference,concise,and dynamic knowledge model from measurable data,and then adjust the welding parameters with corresponding control methods in real time is a central problem to be solved in welding formation control.Hence,this paper proposes a welding penetration control method based on a Neighborhood Rough Set-Adaptive Neuro-Fuzzy Inference System(NRS-ANFIS)to achieve effective penetration control for the GMAW welding process.In orthogonal experiments,the NRS algorithm,which is based on visual sensing to obtain the properties of the weld pool and gap changes,is used to reduce the established frontal weld pool feature information decision table,and the minimum feature set of the weld pool tail width WTand the tail area coefficient CTSis obtained.The minimum feature set of the effective frontal weld pool,real-time line laser distance change,and real-time current information are used as the input for the ANFIS control system.The experimental results for the two groups of time-varying gaps demonstrate that under the condition of no preheating of the base metal,the complete welding penetration rate of the adjusted welding process parameters output by the trained ANFIS model reaches 87%,and the backside melting width is uniform and consistent,which meets the welding specification requirements.
文摘In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.
基金supported by the National Natural Science Foundation of China(No.22068025).
文摘Palm kernel cake(PKC),a major by-product of the palm oil industry,is rich in non-starch polysaccharides.In this study,two polysaccharide fractions,precipitated with acetic acid(PPA)and ethanol(PPE),respectively,were extracted from PKC using a 2 mol/L NaOH solution.The molecular weight,sugar composition,structural characteristics,morphology,antioxidant activity,as well as in vitro stimulated digestion were investigated in detail.The results revealed that due to its poor solubility of PPA in water,the detected molecular weight of PPA was only 2040 g/mol,which was significantly lower than that of PPE(65,300 g/mol).Although PPA and PPE had a similar sugar composition with varying contents,mannose was the predominant monosaccharide in both,accounting for 87.71%and 60.40%,respectively.Both PPA and PPE were primarily composed of crystalline mannan,consisting of mannopyranosyl units linked by(1→4)-β-glycosidic bonds,along with a small amount of lignin.PPA possibly contained a higher proportion of crystalline mannan,whereas PPE had a larger amount of arabinoxylan and galactomannan.Atomic force microscope revealed a stacked morphology for both PPA and PPE.PPA exhibited a higher scavenging rate against DPPH•and ABTS^(+)•but a weaker HO•scavenging activity and reducing power compared with PPE.Within the polysaccharide concentration range of 0.5-5.0 mg/mL,PPA and PPB demonstrated the strongest scavenging activity against ABTS^(+)•,with the highest scavenging rates exceeding 91%.However,PPA and PPB exhibited the weakest scavenging activity against HO•,with their highest HO•scavenging rates reaching only 44.91%and 55.86%,respectively.The antioxidant activities of both PPA and PPE were weaker than that of ascorbic acid.PPA remained almost stable in the in vitro simulated saliva fluid,while PPE exhibited weaker resistance to it.Both PPA and PPE exhibited weak resistance to the in vitro simulated gastric digestion fluids,but remained relatively stable in the in vitro simulated small-intestinal digestion fluid.The differences in physicochemical properties between PPA and PPE likely played an important role in their distinct biological activities.These findings suggest potential utilization of PKC in exploring dietary polysaccharides with favorable antioxidant activity and unique digestive characteristics.
基金supported by the National Key Research and Development Program of China(2021YFF1000304)the National Natural Science Foundation of China(32222060)Anhui Agricultural University(RC422404)to J.Y.
文摘Mitochondria are semi-autonomous organelles present in eukaryotic cells,containing their own genome and transcriptional machinery.However,their functions are intricately linked to proteins encoded by the nuclear genome.Mitochondrial transcription termination factors(mTERFs)are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.Despite their recognized importance,the specific roles of mTERF proteins in maize remain largely unexplored.Here,we clone and functionally characterize the maize mTERF18 gene.Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos,resulting in abortive phenotypes.Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18.We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests.mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein.Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene,leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity.Furthermore,transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects.Collectively,these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52174092 and 51904290)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220157).
文摘In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.